This paper is concerned with a significant issue in the research of nonlinear science, i.e., parameter identification of uncertain incommensurate fractional-order chaotic systems, which can be essentially formulated as a multidimensional optimization problem. Motivated by the basic particle swarm optimization and quantum mechanics theories, an improved quantum-behaved particle swarm optimization (IQPSO) algorithm is proposed to tackle this complex optimization problem. In this work, both systematic parameters and fractional derivative orders are regarded as independent unknown parameters to be identified. Numerical simulations are conducted to identify two typical incommensurate fractional-order chaotic systems. Simulation results and comparisons analyses demonstrate that the proposed method is suitable for parameter identification with advantages of high effectiveness and efficiency. Moreover, we also, respectively, investigate the effect of systematic parameters, fractional derivative orders, and additional noise on the optimization performances. The corresponding results further validate the superior searching capabilities of the proposed algorithm.

References

References
1.
Podlubny
,
I.
,
1999
,
Fractional Differential Equations
,
Academic Press
,
San Diego, CA
, p.
E2
.
2.
Heaviside
,
O.
,
1971
,
Electromagnetic Theory
,
Ams Chelsea Publishing
,
New York
.
3.
Ichise
,
M.
,
Nagayanagi
,
Y.
, and
Kojima
,
T.
,
1971
, “
An Analog Simulation of Non-Integer Order Transfer Functions for Analysis of Electrode Processes
,”
J. Electroanal. Chem. Interfacial Electrochem.
,
33
(
2
), pp.
253
265
.
4.
Pinto
,
C.
,
2017
, “
A Note on Fractional Feed-Forward Networks
,”
Math. Methods Appl. Sci.
,
40
(
17
), pp.
6133
6137
.
5.
Pinto
,
C. M. A.
, and
Carvalho
,
A. R. M.
,
2017
, “
The Impact of Pre-Exposure Prophylaxis (PrEP) and Screening on the Dynamics of HIV
,”
J. Comput. Appl. Math.
, in press.
6.
Pinto
,
C. M. A.
, and
Carvalho
,
A. R. M.
,
2017
, “
The HIV/TB Coinfection Severity in the Presence of TB Multi-Drug Resistant Strains
,”
Ecol. Complexity
,
32
(Pt. A), pp.
1
20
.
7.
Pinto
,
C. M. A.
, and
Carvalho
,
A. R. M.
,
2017
, “
The Role of Synaptic Transmission in a HIV Model With Memory
,”
Appl. Math. Comput.
,
292
(▪), pp.
76
95
.
8.
Singh
,
J.
,
Kumar
,
D.
, and
Baleanu
,
D.
,
2017
, “
On the Analysis of Chemical Kinetics System Pertaining to a Fractional Derivative With Mittag-Leffler Type Kernel
,”
Chaos Interdiscip. J. Nonlinear Sci.
,
27
(
10
), p.
103113
.
9.
Wang
,
Z.
,
Huang
,
X.
, and
Shi
,
G.
,
2011
, “
Analysis of Nonlinear Dynamics and Chaos in a Fractional Order Financial System With Time Delay
,”
Comput. Math. Appl.
,
62
(
3
), pp.
1531
1539
.
10.
Li
,
C.
, and
Chen
,
G.
,
2004
, “
Chaos and Hyperchaos in the Fractional-Order Rössler Equations
,”
Physica A
,
341
, pp.
55
61
.
11.
Grigorenko
,
I.
, and
Grigorenko
,
E.
,
2003
, “
Chaotic Dynamics of the Fractional Lorenz System
,”
Phys. Rev. Lett.
,
91
(
3
), p.
034101
.
12.
Hegazi
,
A. S.
, and
Matouk
,
A. E.
,
2011
, “
Dynamical Behaviors and Synchronization in the Fractional Order Hyperchaotic Chen System
,”
Appl. Math. Lett.
,
24
(
11
), pp.
1938
1944
.
13.
Wang
,
L.
, and
Xu
,
Y.
,
2011
, “
An Effective Hybrid Biogeography-Based Optimization Algorithm for Parameter Estimation of Chaotic Systems
,”
Expert Syst. Appl.
,
38
(
12
), pp.
15103
15109
.
14.
Cheng
,
C. H.
,
Cheng
,
T. Y.
,
Du
,
C. H.
,
Lu
,
Y. C.
,
Chiou
,
Y. P.
,
Liu
,
S.
, and
Wu
,
T. L.
,
2014
, “
Parameter Estimation of Chaotic Systems by an Oppositional Seeker Optimization Algorithm
,”
Nonlinear Dyn.
,
76
(
1
), pp.
509
517
.
15.
Li
,
X.
, and
Yin
,
M.
,
2014
, “
Parameter Estimation for Chaotic Systems by Hybrid Differential Evolution Algorithm and Artificial Bee Colony Algorithm
,”
Nonlinear Dyn.
,
77
(
1–2
), pp.
61
71
.
16.
Wang
,
J.
, and
Zhou
,
B.
,
2016
, “
A Hybrid Adaptive Cuckoo Search Optimization Algorithm for the Problem of Chaotic Systems Parameter Estimation
,”
Neural Comput. Appl.
,
27
(
6
), pp.
1511
1517
.
17.
Diethelm
,
K.
,
1997
, “
An Algorithm for the Numerical Solution of Differential Equations of Fractional Order
,”
Electron. Trans. Numer. Anal.
,
5
(
1
), pp.
1
6
.http://emis.ams.org/journals/ETNA/vol.5.1997/pp1-6.dir/pp1-6.pdf
18.
Diethelm
,
K.
,
Ford
,
N. J.
, and
Freed
,
A. D.
,
2002
, “
A Predictor-Corrector Approach for the Numerical Solution of Fractional Differential Equations
,”
Nonlinear Dyn.
,
29
(
1
), pp.
3
22
.
19.
Baleanu
,
D.
,
Mousalou
,
A.
, and
Rezapour
,
S.
,
2017
, “
On the Existence of Solutions for Some Infinite Coefficient-Symmetric Caputo-Fabrizio Fractional Integro-Differential Equations
,”
Boundary Value Probl.
,
2017
(
1
), p.
145
.
20.
Kumar
,
D.
,
Singh
,
J.
, and
Baleanu
,
D.
,
2018
, “
A New Numerical Algorithm for Fractional Fitzhugh–Nagumo Equation Arising in Transmission of Nerve Impulses
,”
Nonlinear Dyn.
,
91
(
1
), pp.
307
317
.
21.
Parlitz
,
U.
,
Junge
,
L.
, and
Kocarev
,
L.
,
1996
, “
Synchronization-Based Parameter Estimation From Time Series
,”
Phys. Rev. E
,
54
(
6
), p.
6253
.
22.
Parlitz
,
U.
,
1996
, “
Estimating Model Parameters From Time Series by Autosynchronization
,”
Phys. Rev. Lett.
,
76
(
8
), p.
1232
.
23.
Gao
,
F.
,
Fei
,
F.-X.
,
Lee
,
X.-J.
,
Tong
,
H.-Q.
,
Deng
,
Y.-F.
, and
Zhao
,
H.-L.
,
2014
, “
Inversion Mechanism With Functional Extrema Model for Identification Incommensurate and Hyper Fractional Chaos Via Differential Evolution
,”
Expert Syst. Appl.
,
41
(
4
), pp.
1915
1927
.
24.
Storn
,
R.
, and
Price
,
K.
,
1997
, “
Differential Evolution—A Simple and Efficient Heuristic for Global Optimization Over Continuous Spaces
,”
J. Global Optim.
,
11
(
4
), pp.
341
359
.
25.
Shaefer
,
C. G.
,
1993
, “
Genetic Algorithm
,” Rowland Institute for Science, Cambridge, MA, U.S. Patent No.
US5255345A
.https://patents.google.com/patent/US5255345A/en
26.
Kennedy
,
J.
, and
Eberhart
,
R.
,
1995
, “
Particle Swarm Optimization (PSO)
,”
IEEE
International Conference on Neural Networks
, Perth, Australia, Nov. 27–Dec. 1, pp.
1942
1948
.
27.
Yang
,
X. S.
, and
Deb
,
S.
,
2009
, “
Cuckoo Search Via Lévy Flights
,”
World Congress on Nature and Biologically Inspired Computing
(
NaBIC
2009), Coimbatore, India, Dec. 9–11, pp.
210
214
.
28.
Tang
,
Y.
,
Zhang
,
X.
,
Hua
,
C.
,
Li
,
L.
, and
Yang
,
Y.
,
2012
, “
Parameter Identification of Commensurate Fractional-Order Chaotic System Via Differential Evolution
,”
Phys. Lett. A
,
376
(
4
), pp.
457
464
.
29.
Sun
,
J.
,
Xu
,
W.
, and
Feng
,
B.
,
2005
, “
A Global Search Strategy of Quantum-Behaved Particle Swarm Optimization
,”
IEEE
Conference on Cybernetics and Intelligent Systems
, Singapore, Dec. 1–3, pp.
111
116
.
30.
Zhang
,
X. F.
, and
Sui
,
G. F.
,
2013
, “
Quantum-Behaved Particle Swarm Optimization Algorithm for Solving Nonlinear Equations
,”
Adv. Mater. Res.
,
756–759
, pp.
2926
2931
.
31.
Turgut
,
O. E.
,
Turgut
,
M. S.
, and
Coban
,
M. T.
,
2014
, “
Chaotic Quantum Behaved Particle Swarm Optimization Algorithm for Solving Nonlinear System of Equations
,”
Comput. Math. Appl.
,
68
(
4
), pp.
508
530
.
32.
Tang
,
D.
,
Cai
,
Y.
,
Zhao
,
J.
, and
Xue
,
Y.
,
2014
, “
A Quantum-Behaved Particle Swarm Optimization With Memetic Algorithm and Memory for Continuous Non-Linear Large Scale Problems
,”
Inf. Sci.
,
289
(
24
), pp.
162
189
.
33.
Samko
,
S. G.
,
Kilbas
,
A. A.
,
Marichev
,
O. I.
, et al. .,
1993
, “
Fractional Integrals and Derivatives
,”
Theory and Applications
,
Gordon and Breach
,
Yverdon, Switzerland
.
34.
Luchko
,
Y.
, and
Gorenflo
,
R.
,
1999
, “
An Operational Method for Solving Fractional Differential Equations With the Caputo Derivatives
,”
Acta Math. Vietnam.
,
24
(
2
), pp.
207
233
.http://journals.math.ac.vn/acta/pdf/9902207.pdf
35.
Hairer
,
E.
,
Rsett
,
S. P.
, and
Wanner
,
G.
,
1993
,
Solving Ordinary Differential Equations I: Nonstiff Problems
,
2nd ed.
,
Springer-Verlag
,
New York
.
36.
Hairer
,
E.
, and
Wanner
,
G.
,
1991
,
Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems
,
Springer-Verlag
, Berlin.
37.
Tizhoosh
,
H. R.
,
2005
, “
Opposition-Based Learning: A New Scheme for Machine Intelligence
,”
International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce
, Vienna, Austria, Nov. 28–30, pp.
695
701
.
38.
Wang
,
H.
,
Wu
,
Z.
,
Rahnamayan
,
S.
,
Liu
,
Y.
, and
Ventresca
,
M.
,
2011
, “
Enhancing Particle Swarm Optimization Using Generalized Opposition-Based Learning
,”
Inf. Sci.
,
181
(
20
), pp.
4699
4714
.
39.
Rao
,
R. V.
,
Savsani
,
V. J.
, and
Vakharia
,
D. P.
,
2011
, “
Teaching-Learning-Based Optimization: A Novel Method for Constrained Mechanical Design Optimization Problems
,”
Comput.-Aided Des.
,
43
(
3
), pp.
303
315
.
40.
Hu
,
W.
,
Yu
,
Y.
, and
Zhang
,
S.
,
2015
, “
A Hybrid Artificial Bee Colony Algorithm for Parameter Identification of Uncertain Fractional-Order Chaotic Systems
,”
Nonlinear Dyn.
,
82
(
3
), pp.
1441
1456
.
41.
Zhu
,
W.
,
Fang
,
J.
,
Tang
,
Y.
,
Zhang
,
W.
, and
Xu
,
Y.
,
2012
, “
Identification of Fractional-Order Systems Via a Switching Differential Evolution Subject to Noise Perturbations
,”
Phys. Lett. A
,
376
(
45
), pp.
3113
3120
.
42.
Huang
,
Y.
,
Guo
,
F.
,
Li
,
Y.
, and
Liu
,
Y.
,
2015
, “
Parameter Estimation of Fractional-Order Chaotic Systems by Using Quantum Parallel Particle Swarm Optimization Algorithm
,”
PloS One
,
10
(
1
), p.
e0114910
.
43.
Wei
,
J.
,
Yu
,
Y.
, and
Wang
,
S.
,
2015
, “
Parameter Estimation for Noisy Chaotic Systems Based on an Improved Particle Swarm Optimization Algorithm
,”
J. Appl. Anal. Comput.
,
5
(
2
), pp.
232
242
.http://jaac.ijournal.cn/ch/reader/create_pdf.aspx?file_no=20150207&journal_id=jaac
44.
Hu
,
W.
,
Yu
,
Y.
, and
Wang
,
S.
,
2015
, “
Parameters Estimation of Uncertain Fractional-Order Chaotic Systems Via a Modified Artificial Bee Colony Algorithm
,”
Entropy
,
17
(
12
), pp.
692
709
.
45.
Gu
,
W.
,
Yu
,
Y.
, and
Hu
,
W.
,
2015
, “
Parameter Estimation of Unknown Fractional-Order Memristor-Based Chaotic Systems by a Hybrid Artificial Bee Colony Algorithm Combined With Differential Evolution
,”
Nonlinear Dyn.
,
84
(
2
), pp.
779
795
.
46.
Chen
,
W. C.
,
2008
, “
Nonlinear Dynamics and Chaos in a Fractional-Order Financial System
,”
Chaos Solitons Fractals
,
36
(
5
), pp.
1305
1314
.
47.
Petráš, I., and Bednárová, D.,
2009
, “
Fractional-Order Chaotic Systems
,”
IEEE International Conference on Emerging Technologies and Factory Automation
, pp.
1031
1038
.
You do not currently have access to this content.