The resonant behavior of fractional-order Mathieu oscillator subjected to external harmonic excitation is investigated. Based on the harmonic balance (HB) method, the first-order approximate analytical solutions for primary resonance and parametric-forced joint resonance are obtained, and the higher-order approximate steady-state solution for parametric-forced joint resonance is also obtained, where the unified forms of the fractional-order term with fractional order between 0 and 2 are achieved. The correctness of the approximate analytical results is verified by numerical results. The effects of the fractional order and parametric excitation frequency on the resonance response of the system are analyzed in detail. The results show that the HB method is effective to analyze dynamic response in a fractional-order Mathieu system.

References

References
1.
Petras
,
I.
,
2011
,
Fractional-Order Nonlinear Systems
,
Higher Education Press
,
Beijing, China
.
2.
Podlubny
,
I.
,
1999
,
Fractional Differential Equations, Mathematics in Science and Engineering
,
Academic Press
,
New York
.
3.
Li
,
C. P.
, and
Deng
,
W. H.
,
2007
, “
Remarks on Fractional Derivatives
,”
Appl. Math. Comput.
,
187
(
2
), pp.
777
784
.
4.
Cao
,
J. X.
,
Ding
,
H. F.
, and
Li
,
C. P.
,
2013
, “
Implicit Difference Schemes for Fractional Diffusion Equations
,”
Commun. Appl. Math. Comput.
,
27
(
1
), pp.
61
74
.
5.
Shen
,
Y. J.
,
Wei
,
P.
, and
Yang
,
S. P.
,
2014
, “
Primary Resonance of Fractional-Order Van Der Pol Oscillator
,”
Nonlinear Dyn.
,
77
(
4
), pp.
1629
1642
.
6.
Rossikhin
,
Y. A.
, and
Shitikova
,
M. V.
,
1997
, “
Application of Fractional Derivatives to the Analysis of Damped Vibrations of Viscoelastic Single Mass Systems
,”
Acta Mech.
,
120
(
1–4
), pp.
109
125
.
7.
Xu
,
Y.
,
Li
,
Y. G.
,
Liu
,
D.
,
Jia, W. T.
, and
Huang, H.
,
2013
, “
Responses of Duffing Oscillator With Fractional Damping and Random Phase
,”
Nonlinear Dyn.
,
74
(
3
), pp.
745
753
.
8.
Chen
,
J. H.
, and
Chen
,
W. C.
,
2008
, “
Chaotic Dynamics of the Fractionally Damped Van Der Pol Equation
,”
Chaos Solitons Fractals
,
35
(
1
), pp.
188
198
.
9.
Shen
,
Y. J.
,
Yang
,
S. P.
,
Xing
,
H. J.
, and
Gao, G. S.
,
2012
, “
Primary Resonance of Duffing Oscillator With Fractional-Order Derivative
,”
Commun. Nonlinear Sci. Numer. Simul.
,
17
(
7
), pp.
3092
3100
.
10.
Wang
,
Z. H.
, and
Zheng
,
Y. G.
,
2009
, “
The Optimal Form of the Fractional-Order Difference Feedbacks in Enhancing the Stability of a SDOF Vibration System
,”
J. Sound Vib.
,
326
(
3
), pp.
476
488
.
11.
Chen
,
L. C.
,
Zhao
,
T. L.
,
Li
,
W.
, and
Zhao, J.
,
2016
, “
Bifurcation Control of Bounded Noise Excited Duffing Oscillator by a Weakly Fractional-Order PID Feedback Controller
,”
Nonlinear Dyn.
,
83
(
1
), pp.
529
539
.
12.
Hamamci
,
S. E.
,
2008
, “
Stabilization Using Fractional-Order PI and PID Controllers
,”
Nonlinear Dyn.
,
51
(
1–2
), pp.
329
343
.
13.
Li
,
X. H.
,
Hou
,
J. Y.
, and
Chen
,
J. F.
,
2016
, “
An Analytical Method for Mathieu Oscillator Based on Method of Variation of Parameter
,”
Commun. Nonlinear Sci. Numer. Simul.
,
37
, pp.
326
353
.
14.
Choudhury
,
A. G.
, and
Guha
,
P.
,
2014
, “
Damped Equations of Mathieu Type
,”
Appl. Math. Comput.
,
229
, pp.
85
93
.
15.
Rand
,
R. H.
,
Sah
,
S. M.
, and
Suchorsky
,
M. K.
,
2010
, “
Fractional Mathieu Equation
,”
Commun. Nonlinear Sci. Numer. Simul.
,
15
(
11
), pp.
3254
3262
.
16.
Wen
,
S. F.
,
Shen
,
Y. J.
,
Li
,
X. H.
, and
Xing, H. J.
,
2015
, “
Dynamical Analysis of Fractional-Order Mathieu Equation
,”
J. Vibroengineering
,
17
(
5
), pp.
2696
2709
.http://www.jve.lt/Vibro/JVE-2015-17-5/JVE01715081708.html
17.
Mesbahi
,
A.
,
Haeri
,
M.
,
Nazari
,
M.
, and
Butcher, E. A.
,
2015
, “
Fractional Delayed Damped Mathieu Equation
,”
Int. J. Control
,
88
(
3
), pp.
622
630
.
18.
Wen
,
S. F.
,
Shen
,
Y. J.
,
Yang
,
S. P.
, and
Wang, J.
,
2017
, “
Dynamical Response of Mathieu-Duffing Oscillator With Fractional-Order Delayed Feedback
,”
Chaos Solitons Fractals
,
94
, pp.
54
62
.
19.
Yang
,
J. H.
,
Sanjuán
,
M. A. F.
, and
Liu
,
H. G.
,
2015
, “
Bifurcation and Resonance in a Fractional Mathieu-Duffing Oscillator
,”
Eur. Phys. J. B
,
88
(
11
), p.
310
.
20.
Yang
,
J. H.
, and
Zhu
,
H.
,
2013
, “
The Response Property of One Kind of Factional-Order Linear System Excited by Different Periodical Signals
,”
Acta Phys. Sin.
,
62
(
2
), p.
024501
.
21.
Shen
,
Y. J.
,
Wen
,
S. F.
,
Li
,
X. H.
, and
Yang, S. P.
,
2016
, “
Dynamical Analysis of Fractional-Order Nonlinear Oscillator by Incremental Harmonic Balance Method
,”
Nonlinear Dyn.
,
85
(
3
), pp.
1457
1467
.
22.
Guo
,
Z. J.
,
Leung
,
A. Y. T.
, and
Yang
,
H. X.
,
2011
, “
Oscillatory Region and Asymptotic Solution of Fractional Van Der Pol Oscillator Via Residue Harmonic Balance Technique
,”
Appl. Math. Modell.
,
35
(
8
), pp.
3918
3925
.
23.
Xiao
,
M.
,
Zheng
,
W. X.
, and
Cao
,
J.
,
2013
, “
Approximate Expressions of a Fractional Order Van Der Pol Oscillator by the Residue Harmonic Balance Method
,”
Math. Comput. Simul.
,
89
, pp.
1
12
.
24.
Leung
,
A. Y. T.
,
Yang
,
H. X.
, and
Zhu
,
P.
,
2014
, “
Periodic Bifurcation of Duffing-Van Der Pol Oscillators Having Fractional Derivatives and Time Delay
,”
Commun. Nonlinear Sci. Numer. Simul.
,
19
(
4
), pp.
1142
1155
.
25.
Leung
,
A. Y. T.
, and
Guo
,
Z. J.
,
2011
, “
Forward Residue Harmonic Balance for Autonomous and Non-Autonomous Systems With Fractional Derivative Damping
,”
Commun. Nonlinear Sci. Numer. Simul.
,
16
(
4
), pp.
2169
2183
.
26.
Dabiri
,
A.
,
Nazari
,
M.
, and
Butcher
,
E. E.
,
2015
, “
Explicit Harmonic Balance Method for Transition Curve Analysis of Linear Fractional Periodic Time-Delayed Systems
,”
IFAC-PapersOnLine
,
48
(
12
), pp.
39
44
.
27.
Shen
,
Y. J.
,
Yang
,
S. P.
, and
Sui
,
C. Y.
,
2014
, “
Analysis on Limit Cycle of Fractional-Order Van Der Pol Oscillator
,”
Chaos Solitons Fractals
,
67
(
10
), pp.
94
102
.
You do not currently have access to this content.