Molecular dynamics simulations require significant computational resources to generate modest time evolutions. Large active forces lead to large accelerations, requiring subfemtosecond integration time steps to capture the resultant high-frequency vibrations. It is often necessary to combine these fast dynamics with larger scale phenomena, creating a multiscale problem. A multiscale method has been previously shown to greatly reduce the time required to simulate systems in the continuum regime. A new multiscale formulation is proposed to extend the continuum formulation to the atomistic scale. A canonical ensemble model is defined using a modified Nóse–Hoover thermostat to maintain the constant temperature constraint. Results show a significant reduction in computation time mediated by larger allowable integration time steps.

References

References
1.
Lindorff-Larsen
,
K.
,
Piana
,
S.
,
Dror
,
R. O.
, and
Shaw
,
D. E.
,
2011
, “
How Fast-Folding Proteins Fold
,”
Science
,
334
(
6055
), pp.
517
520
.
2.
Nickolls
,
J.
,
Buck
,
I.
,
Garland
,
M.
, and
Skadron
,
K.
,
2008
, “
Scalable Parallel Programming With Cuda
,”
ACM Q.
,
6
(
2
), pp.
40
53
.
3.
Stone
,
J. E.
,
Gohara
,
D.
, and
Shi
,
G.
,
2010
, “
OpenCL: A Parallel Programming Standard for Heterogenous Computing Systems
,”
IEEE Comput. Sci. Eng.
,
12
(
3
), pp.
66
73
.
4.
Meagher
,
D.
,
1980
, “Octree Encoding: A New Technique for the Representation, Manipulation and Display of Arbitrary 3-d Objects by Computer,” Rensselaer Polytechnic Institute, Troy, NY, Technical Report No. IPL-TR-80-111.
5.
Liu
,
W.
,
Schmidt
,
B.
,
Voss
,
G.
, and
Muller-Wittig
,
W.
,
2008
, “
Accelerating Molecular Dynamics Simulations Using Graphics Processing Units With Cuda
,”
Comput. Phys. Commun.
,
179
(
9
), pp.
634
641
.
6.
Anderson
,
J. A.
,
Lorenz
,
C. D.
, and
Travesset
,
A.
,
2008
, “
General Purpose Molecular Dynamics Simulations Fully Implemented on Graphics Processing Units
,”
J. Comput. Phys.
,
227
(
10
), pp.
5342
5359
.
7.
Jain
,
A.
,
Vaidehi
,
N.
, and
Rodriguez
,
G. A.
,
1993
, “
A Fast Recursive Algorithm for Molecular Dynamics Simulation
,”
J. Comput. Phys.
,
106
(
2
), pp.
258
268
.
8.
Featherstone
,
R.
,
1999
, “
A Divide-and-Conquer Articulated-Body Algorithm for Parallel o(Log(n)) Calculation of Rigid-Body-Dynamics—Part 1: Basic Algorithm
,”
Int. J. Rob. Res.
,
18
(
9
), pp.
867
875
.
9.
Chun
,
H. M.
,
Padilla
,
C. E.
,
Chin
,
D. N.
,
Watanabe
,
M.
,
Karlov
,
V. I.
,
Alper
,
H. E.
,
Soosaar
,
K.
,
Blair
,
K. B.
,
Becker
,
O. M.
,
Caves
,
L. S. D.
,
Nagle
,
R.
,
Haney
,
D. N.
, and
Farmer
,
B. L.
,
2000
, “
MBO(N)D: A Multibody Method for Long-Time Molecular Dynamics Simulations
,”
J. Comp. Chem.
,
21
(
3
), pp.
159
184
.
10.
Redon
,
S.
, and
Lin
,
M. C.
,
2006
, “
An Efficient, Error-Bounded Approximation Algorithm for Simulating Quasi-Statics of Complex Linkages
,”
Comput. Aided Des.
,
38
(
4
), pp.
300
314
.
11.
Poursina
,
M.
,
Bhalerao
,
K. D.
,
Flores
,
S. C.
,
Anderson
,
K. S.
, and
Laederach
,
A.
,
2011
, “
Strategies for Articulated Multibody-Based Adaptive Coarse Grain Simulation of RNA
,”
Method Enzymol.
,
487
, pp.
73
98
.
12.
Balaraman
,
G. S.
,
Park
,
I.-H.
,
Jain
,
A.
, and
Vaidehi
,
N.
,
2011
, “
Folding of Small Proteins Using Constrained Molecular Dynamics
,”
J. Phys. Chem.
,
115
(
23
), pp.
7588
7596
.
13.
Gangupomu
,
V. K.
,
Wagner
,
J. R.
,
Park
,
I.-H.
,
Jain
,
A.
, and
Vaidehi
,
N.
,
2013
, “
Mapping Conformational Dynamics of Proteins Using Torsional Dynamics Simulations
,”
Biophys. J.
,
104
(
9
), pp.
1999
2008
.
14.
Malczyk
,
P.
, and
Fraczek
,
J.
,
2014
, “
Molecular Dynamics Simulation of Simple Polymer Chain Formation Using Divide and Conquer Algorithm Based on the Augmented Lagrangian Method
,”
Proc. Inst. Mech. Eng. K
,
229
(
2
), pp.
116
131
.
15.
Deserno
,
M.
, and
Holm
,
C.
,
1998
, “
How to Mesh Up Ewald Sums—I: A Theoretical and Numerical Comparison of Various Particle Mesh Routines
,”
J. Chem. Phys.
,
109
(
18
), pp.
7678
7693
.
16.
Poursina
,
M.
, and
Anderson
,
K. S.
,
2014
, “
An Improved Fast Multipole Method for Electrostatic Potential Calculations in a Class of Coarse-Grained Molecular Simulations
,”
J. Comput. Phys.
,
270
, pp.
613
633
.
17.
Laflin
,
J.
, and
Anderson
,
K. S.
,
2015
, “
A Multibody Approach for Computing Long-Range Forces Between Rigid-Bodies Using Multipole Expansions
,”
J. Mech. Sci. Technol.
,
29
(
7
), pp.
2671
2676
.
18.
Nielson
,
S. O.
,
Lopex
,
C. F.
,
Srinivas
,
G.
, and
Klein
,
M. L.
,
2004
, “
Coarse Grain Models and the Computer Simulation of Soft Materials
,”
J. Phys. Condens. Matter
,
16
(
15
), p.
R481
.
19.
Shih
,
A. Y.
,
Freddolino
,
P. L.
,
Arkhipov
,
A.
, and
Schulten
,
K.
,
2007
, “
Assembly of Lipoprotein Particles Revealed by Coarse-Grained Molecular Dynamics Simulations
,”
J. Struct. Biol.
,
157
(
3
), pp.
579
592
.
20.
Martinetz
,
T.
, and
Schulten
,
K.
,
1994
, “
Topology Representing Networks
,”
Neural Networks
,
7
(
3
), pp.
507
522
.
21.
Mukherjee
,
R. M.
, and
Anderson
,
K. S.
,
2007
, “
Efficient Methodology for Multibody Simulations With Discontinuous Changes in System Definition
,”
Multibody Syst. Dyn.
,
18
(
2
), pp.
145
168
.
22.
Henzler-Wildman
,
K. A.
,
Lei
,
M.
,
Thai
,
V.
,
Kerns
,
S. J.
,
Karplus
,
M.
, and
Kern
,
D.
,
2007
, “
A Hierarchy of Timescales in Protein Dynamics is Linked to Enzyme Catalysis
,”
Nature
,
450
(
7171
), pp.
913
916
.
23.
Smith
,
G. D.
,
Bedrov
,
D.
,
Li
,
L.
, and
Byutner
,
O.
,
2002
, “
A Molecular Dynamics Simulation Study of the Viscoelastic Properties of Polymer Nanocomposites
,”
J. Chem. Phys.
,
117
(
20
), pp.
9478
9489
.
24.
Kremer
,
K.
, and
Muller-Plathe
,
F.
,
2002
, “
Multiscale Simulation in Polymer Science
,”
Mol. Simul.
,
28
(
8–9
), pp.
729
750
.
25.
Zeng
,
Q. H.
,
Yu
,
A. B.
, and
Lu
,
G. Q.
,
2008
, “
Multiscale Modeling and Simulation of Polymer Nanocomposites
,”
Prog. Polym. Sci.
,
33
(
2
), pp.
191
269
.
26.
Broughton
,
J. Q.
,
Abraham
,
F. F.
,
Bernstein
,
N.
, and
Kaxiras
,
E.
,
1999
, “
Concurrent Coupling of Length Scales: Methodology and Application
,”
Phys. Rev. B
,
60
(
4
), pp.
2391
2403
.
27.
Lu
,
G.
,
Tadmor
,
E. B.
, and
Kaxiras
,
E.
,
2006
, “
From Electrons to Finite Elements: A Concurrent Multiscale Approach for Metals
,”
Phys. Rev. B
,
73
(
2
), p.
024108
.
28.
Haghshenas-Jaryani
,
M.
,
Black
,
B.
,
Ghaffari
,
S.
,
Drake
,
J.
,
Bowling
,
A.
, and
Mohanty
,
S.
,
2014
, “
Dynamics of Microscopic Objects in Optical Tweezers: Experimental Determination of Underdamped Regime and Numerical Simulation Using Multiscale Analysis
,”
Nonlinear Dyn.
,
76
(
2
), pp.
1013
1030
.
29.
Palanki
,
A.
, and
Bowling
,
A.
,
2015
, “
Dynamic Model of Estrogen Docking Using Multiscale Analysis
,”
Nonlinear Dyn.
,
79
(
2
), pp.
1519
1534
.
30.
Haghshenas-Jaryani
,
M.
, and
Bowling
,
A.
,
2015
, “
Modeling Flexibility in Myosin V Using a Multiscale Articulated Multi-Rigid Body Approach
,”
ASME J. Comput. Nonlin. Dyn.
,
10
(
1
), p.
011015
.
31.
Guy
,
A.
, and
Bowling
,
A.
,
2016
, “
Multiscale Modeling of Ebola Virus Glycoprotein
,” Nanoengineering for Medicine and Biology Conference (NEMB), Houston, TX, Feb. 21–24.
32.
Andersen
,
H. C.
,
1980
, “
Molecular Dynamics Simulations at Constant Pressure and/or Temperature
,”
J. Chem. Phys.
,
72
(
4
), pp.
2384
2393
.
33.
Berendsen
,
H. J. C.
,
Postma
,
J. P. M.
,
van Gunsteren
,
W. F.
,
DiNola
,
A.
, and
Haak
,
J. R.
,
1984
, “
Molecular Dynamics With Coupling to an External Bath
,”
J. Chem. Phys.
,
81
(
8
), p.
3684
.
34.
Bussi
,
G.
,
Donadio
,
D.
, and
Parrinello
,
M.
,
2007
, “
Canonical Sampling Through Velocity Scaling
,”
J. Chem. Phys.
,
126
(
1
), p.
014101
.
35.
Travis
,
K. P.
, and
Braga
,
C.
,
2008
, “
Configurational Temperature Control for Atomic and Molecular Systems
,”
J. Chem. Phys.
,
128
(
1
), p.
014111
.
36.
Patra
,
P. K.
, and
Bhattacharya
,
B.
,
2014
, “
A Deterministic Thermostat for Controlling Temperature Using All Degrees of Freedom
,”
J. Chem. Phys.
,
140
(
6
), p.
064106
.
37.
Nóse
,
S.
,
1984
, “
A Molecular Dynamics Method for Simulations in the Canonical Ensemble
,”
Mol. Phys.
,
52
, pp.
255
268
.
38.
Hoover
,
W. G.
,
1985
, “
Canonical Dynamics: Equilibrium Phase-Space Distributions
,”
Phys. Rev. A
,
31
(
3
), pp.
1695
1697
.
39.
Vaidehi
,
N.
,
Jain
,
A.
, and
Goddard
,
W. A.
,
1996
, “
Constant Temperature Constrained Molecular Dynamics: The Newton-Euler Inverse Mass Operator Method
,”
J. Phys. Chem.
,
100
(
25
), pp.
10508
10517
.
40.
Poursina
,
M.
, and
Anderson
,
K. S.
,
2013
, “
Canonical Ensemble Simulation of Biopolymers Using a Coarse-Grained Articulated Generalized Divide-and-Conquer Scheme
,”
Comput. Phys. Commun.
,
184
(
3
), pp.
652
660
.
41.
Gamboa
,
G. U.
,
Vasquez-Perez
,
J. M.
,
Calaminici
,
P.
, and
Koster
,
A. M.
,
2010
, “
Influence of Thermostats on the Calculations of Heat Capacities From Born-Oppenheimer Molecular Dynamics Simulations
,”
Int. J. Quantum Chem.
,
110
(
12
), pp.
2172
2178
.
42.
Martyna
,
G. J.
,
Klein
,
M. L.
, and
Tuckerman
,
M.
,
1992
, “
Nóse-Hoover Chains: The Canonical Ensemble Via Continuous Dynamics
,”
J. Chem. Phys.
,
97
(
4
), p.
2635
.
43.
Nagaraj
,
Y.
,
2014
, “Modeling and Simulation of Nanofluid for Heat Storage,”
M.S. thesis
, University of Texas at Arlington, Arlington, TX.https://uta-ir.tdl.org/uta-ir/handle/10106/24918
44.
Guy
,
A.
, and
Bowling
,
A.
,
2017
, “
Modification of Nóse-Hoover Thermostat to Improve Temperature Response in Molecular Simulations
,”
ASME J. Comput. Nonlinear Dyn.
,
12
(
3
), p.
031019
.
45.
Bowling
,
A.
, and
Haghshenas-Jaryani
,
M.
,
2015
, “
A Multiscale Modeling Approach for Biomolecular Systems
,”
Multibody Syst. Dyn.
,
33
(
4
), pp.
333
365
.
46.
Guennebaud
,
G.
, and
Jacob
,
B.
,
2016
, “Eigen v3.3.,” Eigen, http://eigen.tuxfamily.org/index.php?title=3.3
You do not currently have access to this content.