This paper investigates adaptive active control projective synchronization scheme. A general synchronization controller and parameter update laws are proposed to stabilize the error system for the identical structural chaotic systems. It is the first time that the active synchronization, the projective synchronization, and the adaptive synchronization are combined to achieve the synchronization of chaotic systems, which extend the control capability of achieving chaotic synchronization. By using a constant diagonal matrix, the active control is developed. Especially, when designing the controller, we just need to ensure that the diagonal elements of the diagonal matrix are less than or equal 0. So, the synchronization of chaotic systems can be realized more easily. Furthermore, by proposing an active controller, in combination with several different control schemes, we lower the complexity of the design process of the controller. More importantly, the larger the absolute value of product of the diagonal elements of diagonal matrix is, the smoother the curve of chaotic synchronization is and the shorter the time of chaotic synchronization is. In our paper, we take Lorenz system as an example to verify the effectiveness of the proposed synchronization scheme. Theoretical analysis and numerical simulations demonstrate the feasibility of this control method.

References

References
1.
Pecora
,
L. M.
, and
Carroll
,
T. L.
,
1990
, “
Synchronization of Chaotic Systems
,”
Phys. Rev. Lett.
,
64
(
8
), pp.
821
830
.
2.
Akbarzadeh-T
,
M.-R.
,
Hosseini
,
S. A.
, and
Naghibi-Sistani
,
M.-B.
,
2017
, “
Stable Indirect Adaptive Interval Type-2 Fuzzy Sliding-Based Control and Synchronization of Two Different Chaotic Systems
,”
Appl. Soft Comput.
,
55
(
1
), pp.
576
587
.
3.
Hosseini
,
S. A.
,
Akbarzadeh-T
,
M.-R.
, and
Naghibi-Sistani
,
M.-B.
,
2013
, “
A Synchronizing Controller Using a Direct Adaptive Interval Type-2 Fuzzy Sliding Mode Strategy
,” IEEE International Conference on Fuzzy Systems (
FUZZ
), Hyderabad, India, July 7–10.
4.
Junan
,
L.
,
Xiaoqun
,
W.
, and
,
J.
,
2002
, “
Synchronization of a Unified Chaotic System and the Application in Secure Communication
,”
Phys. Lett. A
,
305
(
6
), pp.
365
370
.
5.
Bowong
,
S.
,
2004
, “
Stability Analysis for the Synchronization of Chaotic Systems With Different Order: Application to Secure Communications
,”
Phys. Lett. A
,
326
(
1–2
), pp.
102
113
.
6.
Nan
,
M.
,
Wong
,
C.-N.
,
Tsang
,
K.-F.
, and
Shi
,
X.
,
2000
, “
Secure Digital Communication Based on Linearly Synchronized Chaotic Maps
,”
Phys. Lett. A
,
268
(
1–2
), pp.
61
68
.
7.
Osipov
,
G. V.
,
Pikovsky
,
A. S.
, and
Kurths
,
J.
,
2002
, “
Phase Synchronization of Chaotic Rotators
,”
Phys. Rev. Lett.
,
88
(5), p. 054102.
8.
Xu
,
Y.
,
Zhou
,
W.
,
Fang
,
J.
, and
Sun
,
W.
,
2010
, “
Adaptive Lag Synchronization and Parameters Adaptive Lag Identification of Chaotic Systems
,”
Phys. Lett. A
,
374
(
34
), pp.
3441
3446
.
9.
Liping
,
C.
,
Yi
,
C.
, and
Ranchao
,
W.
,
2011
, “
Lag Projective Synchronization in Fractional-Order Chaotic (Hyperchaotic) Systems
,”
Phys. Lett. A
,
375
(
21
), pp.
2099
2110
.
10.
Chenggui
,
Y.
,
Qi
,
Z.
, and
Jun
,
Y.
,
2013
, “
Complete Synchronization Induced by Disorder in Coupled Chaotic Lattices
,”
Phys. Lett. A
,
377
(
5
), pp.
370
377
.
11.
Jiang
,
G.-P.
,
Tang
,
W. K.-S.
, and
Chen
,
G.
,
2003
, “
A Simple Global Synchronization Criterion for Coupled Chaotic Systems
,”
Chaos, Solitons Fractals
,
15
(5), pp. 925–935.
12.
Nobukawa
,
S.
,
Nishimura
,
H.
,
Yamanishi
,
T.
, and
Liu
,
J.-Q.
,
2015
, “
Analysis of Chaotic Resonance in Izhikevich Neuron Model
,”
PloS One
,
10
(
9
), p. e0138919.
13.
Nobukawa
,
S.
,
Nishimura
,
H.
, and
Yamanishi
,
T.
,
2017
, “
Chaotic Resonance in Typical Routes to Chaos in the Izhikevich Neuron Model
,”
Sci. Rep.
,
7
(
1
), p. 1331.
14.
Meng
,
J.
, and
Wang
,
X.
,
2007
, “
Nonlinear Observer Based Phase Synchronization of Chaotic Systems
,”
Phys. Lett. A
,
369
(
4
), pp.
294
298
.
15.
Ghosh
,
D.
,
2010
, “
Projective Synchronization in Multiple Modulated Time-Delayed Systems With Adaptive Scaling Factor
,”
Nonlinear Dyn.
,
62
(
4
), pp.
751
759
.
16.
Pourdehi
,
S.
,
Karimaghaee
,
P.
, and
Karimipou
,
D.
,
2011
, “
Adaptive Controller Design for Lag-Synchronization of Two Non-Identical Time-Delayed Chaotic Systems With Unknown Parameters
,”
Phys. Lett. A
,
375
(
17
), pp.
1769
1778
.
17.
Sang
,
J.
,
Yang
,
J.
, and
Yue
,
L.
,
2011
, “
Complete Synchronization of Double-Delayed Rössler Systems With Uncertain Parameters
,”
Chin. Phys. B
,
20
(
8
), p. 080507.
18.
Bhowmick
,
S. K.
,
Hens
,
C.
,
Ghosh
,
D.
, and
Dana
,
S. K.
,
2012
, “
Mixed Synchronization in Chaotic Oscillators Using Scalar Coupling
,”
Phys. Lett. A
,
376
(
36
), pp.
2490
2495
.
19.
Wang
,
CHua.
,
Yan
,
H.
,
Fei
,
Y.
, and
Hao
,
X.
,
2013
, “
Time-Controllable Projective Synchronization of a Class of Chaotic Systems Based on Adaptive Method
,”
Acta Phys. Sin.
,
62
(
11
), pp. 139–145.
20.
Li
,
N.
, and
Li
,
J.-F.
,
2011
, “
Unified Projective Synchronization of Chaotic System
,”
Acta Phys. Sin.
,
60
(
11
), p. 110512.
21.
Li
,
Z.-B.
,
Zhao
,
X.-S.
, and
Wang
,
J.
,
2011
, “
Generalized Projective Synchronization of Chaotic Systems Via Modified Active Control
,”
Acta Phys. Sin.
,
60
(
5
), pp.
107
114
.http://en.cnki.com.cn/Article_en/CJFDTotal-WLXB201105017.htm
22.
Wang
,
X.
,
Nian
,
F.
, and
Guo
,
G.
,
2009
, “
High Precision Fast Projective Synchronization in Chaotic (Hyperchaotic) Systems
,”
Phys. Lett. A
,
373
(
20
), pp.
1754
1761
.
23.
Chunmei
,
L.
,
2010
, “
Application of Lyapunov Approach on Stability Theory of System
,”
Master's thesis
, Northeast Normal University, Changchun, China.
24.
Lorenz, E. N.
, 1963, “
Deterministic Nonperiodic Flow
,”
J. Atmos. Sci.
,
20
(20), pp. 130–141.
25.
Samaneh
,
M.
, and
Tahereh
,
B.
,
2018
, “
Robust Adaptive Synchronization of Chaotic Systems With Nonsymmetric Input Saturation Constraints
,”
ASME J. Comput. Nonlinear Dynam.
,
13
(
1
), p.
011005
.
26.
Liu
,
H.-J.
,
Yu
,
H.
, and
Zhu
,
Z.-L.
,
2017
, “
A Special Hybrid Projective Synchronization in Symmetric Chaotic System With Unknown Parameter
,”
ASME J. Comput. Nonlinear Dynam.
,
12
(
5
), p.
051015
.
27.
Tang
,
R.-A.
,
Liu
,
Y.-L.
, and
Xue
,
J.-K.
,
2009
, “
An Extended Active Control for Chaos Synchronization
,”
Phys. Lett. A
,
373
(
16
), pp.
1449
1454
.
28.
Zhang
,
H.
,
Huang
,
W.
,
Wang
,
Z.
, and
Chai
,
T.
,
2006
, “
Adaptive Synchronization Between Two Different Chaotic Systems With Unknown Parameters
,”
Phys. Lett. A
,
350
(
5–6
), pp.
363
366
.
29.
Zhou
,
J.
, and
Chen
,
Z.
,
2008
, “
Further Results on Complete Synchronization for Noise-Perturbed Chaotic Systems
,”
Phys. Lett. A
,
372
(
33
), pp.
5394
5401
.
30.
Hoang
,
T. M.
, and
Nakagawa
,
M.
,
2006
, “
Synchronization of Coupled Nonidentical Multidelay Feedback Systems
,”
Phys. Lett. A
,
363
(
3
), pp.
218
224
.
31.
Du
,
H.
,
Zeng
,
Q.
, and
Wang
,
C.
,
2008
, “
Function Projective Synchronization of Different Chaotic Systems With Uncertain Parameters
,”
Phys. Lett. A
,
372
(
33
), pp.
5402
5410
.
32.
Erjaee
,
G. H.
, and
Momani
,
S.
,
2008
, “
Phase Synchronization in Fractional Differential Chaotic Systems
,”
Phys. Lett. A
,
372
(
14
), pp.
2350
2354
.
You do not currently have access to this content.