Rotation-free shell formulations were proved to be an effective approach to speed up solving large-scaled problems. It reduces systems' degrees-of-freedom (DOF) and avoids shortages of using rotational DOF, such as singular problem and rotational interpolation. The rotation-free element can be extended for solving geometrically nonlinear problems using a corotational (CR) frame. However, its accuracy may be lost if the approach is used directly. Therefore, a new nonlinear rotation-free shell element is formulated to improve the accuracy of the local bending strain energy using a CR frame. The linear strain for bending is obtained by combining two re-derived elements, while the nonlinear part is deduced with the side rotation concept. Furthermore, a local frame is presented to correct the conventional local CR frame. An explicit tangential stiffness matrix is derived based on plane polar decomposition local frame. Simple elemental rotation tests show that the stiffness matrix and the proposed local frame are both correct. Several numerical examples and the application of drape simulations are given to verify the accuracy of nonlinear behavior of the presented element, and some of the results show that the presented method only requires few elements to obtain an accurate solution to the problem studied.

References

References
1.
Phaal
,
R.
, and
Calladine
,
C. R.
,
1992
, “
A Simple Class of Finite Elements for Plate and Shell Problems—I: Elements for Beams and Thin Flat Plates
,”
Int. J. Numer. Methods Eng.
,
35
(
5
), pp.
955
977
.
2.
Zhou
,
Y.
, and
Sze
,
K.
,
2012
, “
A Geometric Nonlinear Rotation-Free Triangle and Its Application to Drape Simulation
,”
Int. J. Numer. Methods Eng.
,
89
(
4
), pp.
509
536
.
3.
Sabourin
,
F.
, and
Brunet
,
M.
,
2006
, “
Detailed Formulation of the Rotation-Free Triangular Element “S3” for General Purpose Shell Analysis
,”
Eng. Comput.
,
23
(
5
), pp.
469
502
.
4.
Guo
,
Y. Q.
,
Gati
,
W.
,
Naceur
,
H.
, and
Batoz
,
J. L.
,
2002
, “
An Efficient DKT Rotation Free Shell Element for Springback Simulation in Sheet Metal Forming
,”
Comput. Struct.
,
80
(
27–30
), pp.
2299
2312
.
5.
Oñate, E.
, and
Zárate, F.
,
2000
, “
Rotation-Free Triangular Plate and Shell Elements
,”
Int. J. Numer. Methods Eng.
,
47
(1–3), pp.
557
603
.
6.
Flores
,
F. G.
, and
Oñate
,
E.
,
2005
, “
Improvements in the Membrane Behaviour of the Three Node Rotation-Free BST Shell Triangle Using an Assumed Strain Approach
,”
Comput. Methods Appl. Mech. Eng.
,
194
(
6–8
), pp.
907
932
.
7.
Oñate
,
E.
, and
Cervera
,
M.
,
1993
, “
Derivation of Thin Plate Bending Elements With One Degree of Freedom Per Node: A Simple Three Node Triangle
,”
Eng. Comput.
,
10
(
6
), pp.
543
561
.
8.
Brunet
,
M.
, and
Sabourin
,
F.
,
2006
, “
Analysis of a Rotation-Free 4-Node Shell Element
,”
Int. J. Numer. Methods Eng.
,
66
(
9
), pp.
1483
1510
.
9.
Gärdsback
,
M.
, and
Tibert
,
G.
,
2007
, “
A Comparison of Rotation-Free Triangular Shell Elements for Unstructured Meshes
,”
Comput. Methods Appl. Mech. Eng.
,
196
(
49–52
), pp.
5001
5015
.
10.
Linhard
,
J.
,
Wüchner
,
R.
, and
Bletzinger
,
K.-U.
,
2007
, “
Upgrading” Membranes to Shells-the CEG Rotation Free Shell Element and Its Application in Structural Analysis
,”
Finite Elem. Anal. Des.
,
44
(
1–2
), pp.
63
74
.
11.
Cirak
,
F.
,
Ortiz
,
M.
, and
Schroder
,
P.
,
2000
, “
Subdivision Surfaces: A New Paradigm for Thin-Shell Finite-Element Analysis
,”
Int. J. Numer. Methods Eng.
,
47
(
12
), pp.
2039
2072
.
12.
Hughes
,
T.
,
Cottrell
,
J.
, and
Bazilevs
,
Y.
,
2005
, “
Isogeometric Analysis: CAD, Finite Elements, NURBS, Exact Geometry and Mesh Refinement
,”
Comput. Methods Appl. Mech. Eng.
,
194
(
39–41
), pp.
4135
4195
.
13.
Kiendl
,
J.
,
Bletzinger
,
K.-U.
,
Linhard
,
J.
, and
Wüchner
,
R.
,
2009
, “
Isogeometric Shell Analysis With Kirchhoff-Love Elements
,”
Comput. Methods Appl. Mech. Eng.
,
198
(
49–52
), pp.
3902
3914
.
14.
Shabana
,
A.
, and
Christensen
,
A.
,
1997
, “
Three Dimensional Absolute Nodal Coordinate Formulation: Plate Problem
,”
Int. J. Numer. Methods Eng.
,
40
(
15
), pp.
2775
2790
.
15.
Felippa
,
C. A.
,
2000
, “
A Systematic Approach to the Element-Independent Corotational Dynamics of Finite Elements
,” Fourth International Colloquium on Computation of Shell Spatial Structures, Athens, Greece, June 4–7, Paper No.
CU-CAS-00-03
.
16.
Nour-Omid
,
B.
, and
Rankin
,
C.
,
1991
, “
Finite Rotation Analysis and Consistent Linearization Using Projectors
,”
Comput. Methods Appl. Mech. Eng.
,
93
(
3
), pp.
353
384
.
17.
Felippa
,
C. A.
, and
Haugen
,
B.
,
2005
, “
A Unified Formulation of Small-Strain Corotational Finite Elements—I: Theory
,”
Comput. Methods Appl. Mech. Eng.
,
194
(
21–24
), pp.
2285
2335
.
18.
Crisfield
,
M. A.
,
Galvanetto
,
U.
, and
Jelenic
,
G.
,
1997
, “
Dynamics of 3-D Co-Rotational Beams
,”
Comput. Mech.
,
20
(
6
), pp.
507
519
.
19.
Eriksson
,
A.
, and
Pacoste
,
C.
,
2002
, “
Element Formulation and Numerical Techniques for Stability Problems in Shells
,”
Comput. Methods Appl. Mech. Eng.
,
191
(
35
), pp.
3775
3810
.
20.
Battini
,
J.-M.
,
2007
, “
A Modified Corotational Framework for Triangular Shell Elements
,”
Comput. Methods Appl. Mech. Eng.
,
196
(
13–16
), pp.
1905
1914
.
21.
Rankin
,
C.
, and
Nour-Omid
,
B.
,
1988
, “
The Use of Projectors to Improve Finite Element Performance
,”
Comput. Struct.
,
30
(
1–2
), pp.
257
267
.
22.
Caselli
,
F.
, and
Bisegna
,
P.
,
2013
, “
Polar Decomposition Based Corotational Framework for Triangular Shell Elements With Distributed Loads
,”
Int. J. Numer. Methods Eng.
,
95
(
6
), pp.
499
528
.
23.
Areias
,
P.
,
Garção
,
J.
,
Pires
,
E. B.
, and
Barbosa
,
J. I.
,
2011
, “
Exact Corotational Shell for Finite Strains and Fracture
,”
Comput. Mech.
,
48
(
4
), pp.
385
406
.
24.
Sze
,
K. Y.
, and
Zhou
,
Y. X.
,
2016
, “
An Efficient Rotation-Free Triangle for Drape/Cloth Simulations—Part I: Model Improvement, Dynamic Simulation and Adaptive Remeshing
,”
Int. J. Comput. Methods
,
13
(
3
), p.
1650021
.
25.
Sabourin
,
F.
, and
Brunet
,
M.
,
1995
, “
Analysis of Plates and Shells With a Simplified Three Node Triangular Element
,”
Thin-Walled Struct.
,
21
(
3
), pp.
209
223
.
26.
Kang
,
T. J.
, and
Yu
,
W. R.
,
1995
, “
Drape Simulation of Woven Fabric by Using the Finite-Element Method
,”
J. Text. Inst.
,
86
(
4
), pp.
635
648
.
27.
Arnold
,
M.
, and
Brüls
,
O.
,
2007
, “
Convergence of the Generalized-α Scheme for Constrained Mechanical Systems
,”
Multibody Syst. Dyn.
,
18
(
2
), pp.
185
202
.
28.
Sze
,
K. Y.
,
Liu
,
X. H.
, and
Lo
,
S. H.
,
2004
, “
Popular Benchmark Problems for Geometric Nonlinear Analysis of Shells
,”
Finite Elem. Anal. Des.
,
40
(
11
), pp.
1551
1569
.
29.
Almeida
,
F.
, and
Awruch
,
A.
,
2011
, “
Corotational Nonlinear Dynamic Analysis of Laminated Composite Shells
,”
Finite Elem. Anal. Des.
,
47
(
10
), pp.
1131
1145
.
30.
Brank
,
B.
,
Korelc
,
J.
, and
Ibrahimbegović
,
A.
,
2003
, “
Dynamics and Time-Stepping Schemes for Elastic Shells Undergoing Finite Rotations
,”
Comput. Struct.
,
81
(
12
), pp.
1193
1210
.
31.
Noels
,
L.
,
Stainier
,
L.
, and
Philippe
,
J.
,
2002
, “
Automatic Time Stepping Algorithms for Implicit Numerical Simulations of Non-Linear Dynamics
,”
Adv. Eng. Software
,
33
(
7–10
), pp.
589
603
.
32.
Bottasso
,
C. L.
,
Bauchau
,
O.
, and
Choi
,
J.-Y.
,
2002
, “
An Energy Decaying Scheme for Nonlinear Dynamics of Shells
,”
Comput. Methods Appl. Mech. Eng.
,
191
(
27–28
), pp.
3099
3121
.
33.
Kuhl
,
D.
, and
Ramm
,
E.
,
1999
, “
Generalized Energy-Momentum Method for Non-Linear Adaptive Shell Dynamics
,”
Comput. Methods Appl. Mech. Eng.
,
178
(
3–4
), pp.
343
366
.
34.
Xie
,
Q.
,
Sze
,
K. Y.
, and
Zhou
,
Y. X.
,
2015
, “
Drape Simulation Using Solid-Shell Elements and Adaptive Mesh Subdivision
,”
Finite Elem. Anal. Des.
,
106
, pp.
85
102
.
35.
Dassault Systèmes
,
2017
, “
SIMULIA User Assistance 2017
,” Dassault Systèmes, Providence, RI.
You do not currently have access to this content.