A new scheme based on the homotopy analysis method (HAM) is developed for calculating the nonlinear normal modes (NNMs) of multi degrees-of-freedom (MDOF) oscillatory systems with quadratic and cubic nonlinearities. The NNMs in the presence of internal resonances can also be computed by the proposed method. The method starts by approximating the solution at the zeroth-order, using some few harmonics, and proceeds to higher orders to improve the approximation by automatically including higher harmonics. The capabilities and limitations of the method are thoroughly investigated by applying them to three nonlinear systems with different nonlinear behaviors. These include a two degrees-of-freedom (2DOF) system with cubic nonlinearities and one-to-three internal resonance that occurs on nonlinear frequencies at high amplitudes, a 2DOF system with quadratic and cubic nonlinearities having one-to-two internal resonance, and the discretized equations of motion of a cylindrical shell. The later one has internal resonance of one-to-one. Moreover, it has the symmetry property and its DOFs may oscillate with phase difference of 90 deg, leading to the traveling wave mode. In most cases, the estimated backbone curves are compared by the numerical solutions obtained by continuation of periodic orbits. The method is found to be accurate for reasonably high amplitude vibration especially when only cubic nonlinearities are present.

References

References
1.
Kerschen
,
G.
,
Peeters
,
M.
,
Golinval
,
J. C.
, and
Vakakis
,
A. F.
,
2009
, “
Nonlinear Normal Modes—Part I: A Useful Framework for the Structural Dynamicist
,”
Mech. Syst. Signal Process.
,
23
(
1
), pp.
170
194
.
2.
Vakakis
,
A. F.
,
1997
, “
Non-Linear Normal Modes (NNMs) and Their Applications in Vibration Theory: An Overview
,”
Mech. Syst. Signal Process.
,
11
(
1
), pp.
3
22
.
3.
Ardeh
,
H. A.
,
2014
, Geometrical Theory of Nonlinear Modal Analysis,”
Ph.D. thesis
, University of Wisconsin-Madison, Madison, WI.http://sd.engr.wisc.edu/wp-uploads/2015/02/Geometrical-Theory-of-Nonlinear-Modal-Analysis-Thesis-by-H-A-Ardeh.pdf
4.
Avramov
,
K. V.
, and
Mikhlin
,
Y. V.
,
2013
, “
Review of Applications of Nonlinear Normal Modes for Vibrating Mechanical Systems
,”
ASME Appl. Mech. Rev.
,
65
(
2
), p.
020801
.
5.
Blanc
,
F.
,
Touzé
,
C.
,
Mercier
,
J. F.
,
Ege
,
K.
, and
Bonnet Ben-Dhia
,
A. S.
,
2013
, “
On the Numerical Computation of Nonlinear Normal Modes for Reduced-Order Modelling of Conservative Vibratory Systems
,”
Mech. Syst. Signal Process.
,
36
(
2
), pp.
520
539
.
6.
Rosenberg
,
R. M.
,
1960
, “
Normal Modes of Nonlinear Dual-Mode Systems
,”
ASME J. Appl. Mech.
,
27
(
2
), pp.
263
268
.
7.
Rosenberg
,
R. M.
,
1962
, “
The Normal Modes of Nonlinear n-Degree-of-Freedom Systems
,”
ASME J. Appl. Mech.
,
29
(
1
), pp.
7
14
.
8.
Nayfeh
,
A. H.
, and
Nayfeh
,
S. A.
,
1995
, “
Nonlinear Normal Modes of a Continuous System With Quadratic Nonlinearities
,”
ASME J. Vib. Acoust.
,
117
(
2
), pp.
199
205
.
9.
Lee
,
Y. S.
,
Kerschen
,
G.
,
Vakakis
,
A. F.
,
Panagopoulos
,
P.
,
Bergman
,
L.
, and
McFarland
,
D. M.
,
2005
, “
Complicated Dynamics of a Linear Oscillator With a Light, Essentially Nonlinear Attachment
,”
Phys. D: Nonlinear Phenom.
,
204
(
1–2
), pp.
41
69
.
10.
Shaw
,
S. W.
, and
Pierre
,
C.
,
1993
, “
Normal Modes for Non-Linear Vibratory Systems
,”
J. Sound Vib.
,
164
(
1
), pp.
85
124
.
11.
Shaw
,
S. W.
, and
Pierre
,
C.
,
1994
, “
Normal Modes of Vibration for Non-Linear Continuous Systems
,”
J. Sound Vib.
,
169
(
3
), pp.
319
347
.
12.
Peeters
,
M.
,
Viguié
,
R.
,
Sérandour
,
G.
,
Kerschen
,
G.
, and
Golinval
,
J. C.
,
2009
, “
Nonlinear Normal Modes—Part II: Toward a Practical Computation Using Numerical Continuation Techniques
,”
Mech. Syst. Signal Process.
,
23
(
1
), pp.
195
216
.
13.
Mikhlin
,
Y. V.
, and
Avramov
,
K. V.
,
2011
, “
Nonlinear Normal Modes for Vibrating Mechanical Systems. Review of Theoretical Developments
,”
ASME Appl. Mech. Rev.
,
63
(6), p.
060802
.
14.
Renson
,
L.
,
Kerschen
,
G.
, and
Cochelin
,
B.
,
2016
, “
Numerical Computation of Nonlinear Normal Modes in Mechanical Engineering
,”
J. Sound Vib.
,
364
, pp.
177
206
.
15.
Detroux
,
T.
,
Renson
,
L.
, and
Kerschen
,
G.
,
2014
, “
The Harmonic Balance Method for Advanced Analysis and Design of Nonlinear Mechanical Systems
,”
Nonlinear Dynamics, Volume 2: Proceedings of the 32nd IMAC, a Conference and Exposition on Structural Dynamics
,
G.
Kerschen
, ed.,
Springer International Publishing
,
Cham, Switzerland
, pp.
19
34
.
16.
Lacarbonara
,
W.
, and
Camillacci
,
R.
,
2004
, “
Nonlinear Normal Modes of Structural Systems Via Asymptotic Approach
,”
Int. J. Solids Struct.
,
41
(
20
), pp.
5565
5594
.
17.
Lacarbonara
,
W.
, and
Rega
,
G.
,
2003
, “
Resonant Non-Linear Normal Modes—Part II: Activation/Orthogonality Conditions for Shallow Structural Systems
,”
Int. J. Non-Linear Mech.
,
38
(
6
), pp.
873
887
.
18.
Lacarbonara
,
W.
,
Rega
,
G.
, and
Nayfeh
,
A. H.
,
2003
, “
Resonant Non-Linear Normal Modes—Part I: Analytical Treatment for Structural One-Dimensional Systems
,”
Int. J. Non-Linear Mech.
,
38
(
6
), pp.
851
872
.
19.
Touzé
,
C.
,
Thomas
,
O.
, and
Chaigne
,
A.
,
2004
, “
Hardening/Softening Behaviour in Non-Linear Oscillations of Structural Systems Using Non-Linear Normal Modes
,”
J. Sound Vib.
,
273
(
1–2
), pp.
77
101
.
20.
Touzé
,
C.
,
Thomas
,
O.
, and
Huberdeau
,
A.
,
2004
, “
Asymptotic Non-Linear Normal Modes for Large-Amplitude Vibrations of Continuous Structures
,”
Comput. Struct.
,
82
(
31–32
), pp.
2671
2682
.
21.
Pesheck
,
E.
,
Boivin
,
N.
,
Pierre
,
C.
, and
Shaw
,
S. W.
,
2001
, “
Nonlinear Modal Analysis of Structural Systems Using Multi-Mode Invariant Manifolds
,”
Nonlinear Dyn.
,
25
(
1–3
), pp.
183
205
.
22.
Ardeh
,
H. A.
, and
Allen
,
M. S.
,
2015
, “
Multiharmonic Multiple-Point Collocation: A Method for Finding Periodic Orbits of Strongly Nonlinear Oscillators
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
4
), p.
041006
.
23.
Bellizzi
,
S.
, and
Bouc
,
R.
,
2005
, “
A New Formulation for the Existence and Calculation of Nonlinear Normal Modes
,”
J. Sound Vib.
,
287
(
3
), pp.
545
569
.
24.
Liao
,
S.
,
2003
,
Beyond Perturbation: Introduction to the Homotopy Analysis Method
,
CRC Press
, Boca Raton, FL.
25.
Liao
,
S.
,
2009
, “
Notes on the Homotopy Analysis Method: Some Definitions and Theorems
,”
Commun. Nonlinear Sci. Numer. Simul.
,
14
(
4
), pp.
983
997
.
26.
Abbasbandy
,
S.
,
2006
, “
The Application of Homotopy Analysis Method to Nonlinear Equations Arising in Heat Transfer
,”
Phys. Lett. A
,
360
(
1
), pp.
109
113
.
27.
Kazuki
,
Y.
,
Mariko
,
Y.
, and
Kazuhiro
,
T.
,
2007
, “
An Analytic Solution of Projectile Motion With the Quadratic Resistance Law Using the Homotopy Analysis Method
,”
J. Phys. A: Math. Theor.
,
40
(
29
), p.
8403
.
28.
Liao
,
S.-J.
, and
Cheung
,
K. F.
,
2003
, “
Homotopy Analysis of Nonlinear Progressive Waves in Deep Water
,”
J. Eng. Math.
,
45
(
2
), pp.
105
116
.
29.
Van Gorder
,
R. A.
, and
Vajravelu
,
K.
,
2008
, “
Analytic and Numerical Solutions to the Lane–Emden Equation
,”
Phys. Lett. A
,
372
(
39
), pp.
6060
6065
.
30.
Yang
,
C.
, and
Liao
,
S.
,
2006
, “
On the Explicit, Purely Analytic Solution of Von Kármán Swirling Viscous Flow
,”
Commun. Nonlinear Sci. Numer. Simul.
,
11
(
1
), pp.
83
93
.
31.
Liao
,
S.-J.
, and
Chwang
,
A. T.
,
1998
, “
Application of Homotopy Analysis Method in Nonlinear Oscillations
,”
ASME J. Appl. Mech.
,
65
(
4
), pp.
914
922
.
32.
Pirbodaghi
,
T.
,
Ahmadian
,
M. T.
, and
Fesanghary
,
M.
,
2009
, “
On the Homotopy Analysis Method for Non-Linear Vibration of Beams
,”
Mech. Res. Commun.
,
36
(
2
), pp.
143
148
.
33.
Qian
,
Y. H.
,
Ren
,
D. X.
,
Lai
,
S. K.
, and
Chen
,
S. M.
,
2012
, “
Analytical Approximations to Nonlinear Vibration of an Electrostatically Actuated Microbeam
,”
Commun. Nonlinear Sci. Numer. Simul.
,
17
(
4
), pp.
1947
1955
.
34.
Sedighi
,
H. M.
,
Shirazi
,
K. H.
, and
Zare
,
J.
,
2012
, “
An Analytic Solution of Transversal Oscillation of Quintic Non-Linear Beam With Homotopy Analysis Method
,”
Int. J. Non-Linear Mech.
,
47
(
7
), pp.
777
784
.
35.
Tajaddodianfar
,
F.
,
Nejat Pishkenari
,
H.
,
Hairi Yazdi
,
M. R.
, and
Maani Miandoab
,
E.
,
2015
, “
On the Dynamics of Bistable Micro/Nano Resonators: Analytical Solution and Nonlinear Behavior
,”
Commun. Nonlinear Sci. Numer. Simul.
,
20
(
3
), pp.
1078
1089
.
36.
Liao
,
S.-J.
,
2004
, “
An Analytic Approximate Approach for Free Oscillations of Self-Excited Systems
,”
Int. J. Non-Linear Mech.
,
39
(
2
), pp.
271
280
.
37.
Pirbodaghi
,
T.
, and
Hoseini
,
S.
,
2009
, “
Nonlinear Free Vibration of a Symmetrically Conservative Two-Mass System With Cubic Nonlinearity
,”
ASME J. Comput. Nonlinear Dyn.
,
5
(
1
), p.
011006
.
38.
Yongqiang
,
L.
, and
Zhu Dawei
,
L. F.
,
2010
, “
Geometrically Nonlinear Free Vibrations of the Symmetric Rectangular Honeycomb Sandwich Panels With Simply Supported Boundaries
,”
Compos. Struct.
,
92
(
5
), pp.
1110
1119
.
39.
Qian
,
Y. H.
,
Zhang
,
W.
,
Lin
,
B. W.
, and
Lai
,
S. K.
,
2011
, “
Analytical Approximate Periodic Solutions for Two-Degree-of-Freedom Coupled Van Der Pol-Duffing Oscillators by Extended Homotopy Analysis Method
,”
Acta Mech.
,
219
(
1–2
), pp.
1
14
.
40.
Qian
,
Y. H.
,
Duan
,
C. M.
,
Chen
,
S. M.
, and
Chen
,
S. P.
,
2012
, “
Asymptotic Analytical Solutions of the Two-Degree-of-Freedom Strongly Nonlinear Van Der Pol Oscillators With Cubic Couple Terms Using Extended Homotopy Analysis Method
,”
Acta Mech.
,
223
(
2
), pp.
237
255
.
41.
Zhang
,
W.
,
Qian
,
Y. H.
,
Yao
,
M. H.
, and
Lai
,
S. K.
,
2011
, “
Periodic Solutions of Multi-Degree-of-Freedom Strongly Nonlinear Coupled Van Der Pol Oscillators by Homotopy Analysis Method
,”
Acta Mech.
,
217
(
3–4
), pp.
269
285
.
42.
Liao
,
S.
,
2010
, “
An Optimal Homotopy-Analysis Approach for Strongly Nonlinear Differential Equations
,”
Commun. Nonlinear Sci. Numer. Simul.
,
15
(
8
), pp.
2003
2016
.
43.
Pesheck
,
E.
,
Pierre
,
C.
, and
Shaw
,
S. W.
,
2002
, “
A New Galerkin-Based Approach for Accurate Non-Linear Normal Modes Through Invariant Manifolds
,”
J. Sound Vib.
,
249
(
5
), pp.
971
993
.
44.
Doedel
,
E. J.
,
Paffenroth
,
R. C.
,
Champneys
,
A. R.
,
Fairgrieve
,
T. F.
,
Kuznetsov
,
Y. A.
, and
Oldeman
,
B. E.
, 2011, “Auto 07p: Continuation and Bifurcation Software for Ordinary Differential Equations,” Concordia University, Montreal, QC, Canada, accessed Feb. 9, 2018, http://www.macs.hw.ac.uk/~gabriel/auto07/auto.html
45.
Sérandour
,
G.
,
Peeters
,
M.
,
Kerschen
,
G.
, and
Golinval
,
J. C.
,
2008
, “
Computation of Nonlinear Normal Modes—Part II: Numerical Continuation in Auto
,” EUROMECH Conference (
ENOC
), St. Peterberg, Russia, June 30–July 4.https://www.researchgate.net/publication/266851073_COMPUTATION_OF_NONLINEAR_NORMAL_MODES_PART_II_NUMERICAL_CONTINUATION_IN_AUTO
46.
Pellicano
,
F.
,
Amabili
,
M.
, and
Paı̈doussis
,
M. P.
,
2002
, “
Effect of the Geometry on the Non-Linear Vibration of Circular Cylindrical Shells
,”
Int. J. Non-Linear Mech.
,
37
(
7
), pp.
1181
1198
.
47.
Avramov
,
K. V.
,
2012
, “
Nonlinear Modes of Vibrations for Simply Supported Cylindrical Shell With Geometrical Nonlinearity
,”
Acta Mech.
,
223
(
2
), pp.
279
292
.
You do not currently have access to this content.