The application of Hopf bifurcation is essential to rail vehicle dynamics because it corresponds to the linear critical speed. In engineering, researchers always wonder which vehicle parameters are sensitive to it. With the nonlinear singularity theory's development, it has been widely applied in many other engineering areas. This paper mainly studies the singularity theory applied in nonlinear rail vehicle dynamics. First, the bifurcation norm forms of wheelset and bogie system are, respectively, deduced. Then the universal unfolding is obtained and the influences of perturbation on bifurcation are investigated. By the analysis of a simple bar-spring system, the relationship between the unfolding and original perturbation parameters can be found. But this may be difficult to calculate for the case in vehicle system because of higher degrees-of-freedom (DOFs) and indicate that can explain the influence of all possible parameters perturbations on vehicle bifurcation.

References

References
1.
Hans
,
T.
,
2008
, “
On the Critical Speed of High Speed Railway Vehicles
,”
Noise and Vibration on High-Speed Railways Workshop
, Porto, Portugal, Oct. 2–3, pp.
149
166
.
2.
Kalker
,
J. J.
,
1979
, “
The Computation of Three Dimensional Rolling Contact With Dry Friction
,”
Int. J. Numer. Methods Eng.
,
14
(
9
), pp.
1293
1307
.
3.
Kalker
,
J. J.
,
1982
, “
A Fast Algorithm for the Simplified Theory of Rolling Contact
,”
Veh. Syst. Dyn.
,
11
(
1
), pp.
1
13
.
4.
Zhiyun
,
S.
,
Hedrick
,
J. K.
, and
Elkins
,
J. A.
,
1984
, “
A Comparison of Alternative Creep Force Models for Rail Vehicle Dynamic Analysis
,”
Eighth IAVSD, Dynamics of Vehicles on Roads and Tracks
, Cambridge, UK, Aug. 15–19, pp.
591
605
.
5.
Wickens
,
A. H.
,
1965
, “
The Dynamic Stability of Railway Vehicle Wheelsets and Bogies Having Profiled Wheels
,”
Int. J. Solids Sturct.
,
1
(
3
), pp.
319
341
.
6.
Knudsen
,
C.
,
Feldberg
,
R.
, and
Jaschinski
,
A.
,
1991
, “
Nonlinear Dynamic Phenomena in the Behavior of a Railway Wheelset Model
,”
Nonlinear Dyn.
,
2
(
5
), pp.
389
404
.
7.
Kaas-Petersen
,
C.
, and
True
,
H.
,
1986
, “
Periodic, Bi-Periodic and Chaotic Dynamical Behaviour of Railway Vehicles
,”
Ninth IAVSD Symposium on the Dynamics of Vehicles on Roads and Tracks
, Linköping, Sweden, June 24–28, pp.
208
221
.
8.
Kaas-Petersen
,
C.
,
1986
, “
Chaos in a Railway Bogie
,”
Acta Mech.
,
61
(
1–4
), pp.
89
107
.
9.
True
,
H.
,
1993
, “
Dynamics of a Rolling Wheelset
,”
ASME Appl. Mech. Rev.
,
46
(
7
), pp. 438–444.
10.
True
,
H.
, and
Kaas-Petersen
,
C.
,
1983
, “
A Bifurcation Analysis of Nonlinear Oscillations in Railway Vehicle
,”
Veh. Syst. Dyn.
,
12
(1–3), pp. 5–6.
11.
True
,
H.
, and
Kaas-Petersen
,
C.
,
1984
, “
A Bifurcation Analysis of Nonlinear Oscillations in Railway Vehicles
,”
Eighth IAVSD Symposium on Dynamics of Vehicles on Roads and Tracks
, Cambridge, UK, Aug. 15–19, pp.
655
665
.
12.
True
,
H.
,
1992
, “
Railway Vehicle Chaos and Asymmetric Hunting
,”
Veh. Syst. Dyn.
,
20
(Suppl. 1), pp.
625
637
.
13.
Huigol
,
R.
,
Janus
,
R. R.
,
Lohe
,
M. A.
, and
Sag
,
T. W.
,
1984
, “
On the Application of a Numerical Algorithm for Hopf Bifurcation to the Hunting of a Wheelset
,”
J. Aust. Math. Soc. Ser. B
,
25
(
3
), pp.
384
405
.
14.
Zeng
,
J.
,
1996
, “
Numerical Computations of the Hunting Bifurcation and Limit Cycles for Railway Vehicle System
,”
J. China Railw. Soc.
,
18
(
3
), pp. 13–19.
15.
Huilgol
,
R. R.
,
1978
, “
Hopf–Friedrichs Bifurcation and the Hunting of a Railway Axle
,”
Q. J. Appl. Math.
,
36
, pp.
85
94
.
16.
Ahmadian
,
M.
, and
Yang
,
S.
,
1998
, “
Effect of System Nonlinearities on Locomotive Bogie Hunting Stability
,”
Veh. Syst. Dyn.
,
29
(
6
), pp.
365
384
.
17.
Ahmadian
,
M.
, and
Yang
,
S.
,
1998
, “
Hopf Bifurcation and Hunting Behavior in a Rail Wheelset With Flange Contact
,”
Nonlinear Dyn.
,
15
(
1
), pp.
15
30
.
18.
Gao
,
X. J.
,
Li
,
Y. H.
, and
Yue
,
Y.
,
2012
, “
The ‘Resultant Bifurcation Diagram’ Method and Its Application to Bifurcation Behaviors of a Symmetric Railway Bogie System
,”
Nonlinear Dyn.
,
70
(1), pp. 363–380.
19.
Jensen
,
C.
,
Golubitsky
,
M.
, and
True
,
H.
,
1999
, “
Symmetry, Generic Bifurcations and Mode Interaction in Nonlinear Railway Dynamics
,”
Int. J. Bifurcation Chaos
,
9
(
7
), pp.
1321
1331
.
20.
von Wagner
,
U.
,
2009
, “
Nonlinear Dynamic Behavior of a Railway Wheelset
,”
Veh. Syst. Dyn.
,
47
(
5
), pp.
627
640
.
21.
Kuznetsov
,
Y. A.
,
1998
,
Elements of Applied Bifurcation Theory
,
2nd ed.
,
Springer-Verlag
,
New York
, pp.
91
99
;175–178;307–308.
22.
Hassard
,
B. D.
,
Kazarinoff
,
N. D.
, and
Wan
,
Y.-H.
,
1981
,
Theory and Application of Hopf Bifurcation
,
Cambridge University Press
, London, pp.
14
52
;130.
23.
Golubitsky
,
M.
, and
Schaeffer
,
D. G.
,
1985
,
Singularities and Groups in Bifurcation Theory
, Vol. 1,
Springer-Verlag
,
New York
.
24.
Golubitsky, M.
, and
Schaeffer, D. G.
, 1988,
Singularities and Groups in Bifrucation Theory
, Vol. 2, Springer-Verlag, New York.
25.
Yilei
,
T.
,
Deqing
,
H.
,
Shigui, R.
, and
Weinian, Z.
, 2008, “
Coexistence of Limit Cycles and Homoclinic Loops in a SIRS Model With a Nonlinear Incidence Rate
,”
SIAM J. Appl. Math.
,
69
(
2
), pp.
621
639
.
26.
Alessio
,
F.
,
Guillaume
,
D.
, and
Rodolphe
,
S.
, 2013, “
Modeling the Modulation of Neuronal Bursting: A Singularity Theory Approach
,”
SIAM J. Appl. Dyn. Syst.
,
13
(
2
), pp.
798
829
.
27.
Freire
,
E.
,
Pizarro, L.
,
Rodríguez-Luis, A. J.
, and
Fernández-Sánchez, F.
,
2005
, “
Multi-Parametric Bifurcations in an Enzyme-Catalyzed Reaction Model
,”
Int. J. Bifurcation Chaos
,
15
(3), pp.
905
947
.
28.
Qishao
,
L.
,
1995
,
Advance Series in Nonlinear Science Bifurcation and Singularities
,
Shanghai Scientific and Technological Education Publishing House
,
Shanghai, China
.
29.
Ignesti
,
M.
,
Innocenti
,
A.
,
Marini
,
L.
,
Meli
,
E.
, and
Rindi
,
A.
,
2013
, “
Development of a Wear Model for the Wheel Profile Optimisation on Railway Vehicles
,”
Veh. Syst. Dyn.
,
51
(
9
), pp.
1363
1402
.
You do not currently have access to this content.