Fractional calculus is viewed as a novel and powerful tool to describe the stress and strain relations in viscoelastic materials. Consequently, the motions of engineering structures incorporated with viscoelastic dampers can be described by fractional-order differential equations. To deal with the fractional differential equations, initialization for fractional derivatives and integrals is considered to be a fundamental and unavoidable problem. However, this issue has been an open problem for a long time and controversy persists. The initialization function approach and the infinite state approach are two effective ways in initialization for fractional derivatives and integrals. By comparing the above two methods, this technical brief presents equivalence and unification of the Riemann–Liouville fractional integrals and the diffusive representation. First, the equivalence is proved in zero initialization case where both of the initialization function and the distributed initial condition are zero. Then, by means of initialized fractional integration, equivalence and unification in the case of arbitrary initialization are addressed. Connections between the initialization function and the distributed initial condition are derived. Besides, the infinite dimensional distributed initial condition is determined by means of input function during historic period.

References

References
1.
Podlubny
,
I.
,
1999
,
Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications
,
Academic Press
,
San Diego, CA
.
2.
Liang
,
Y.
,
Chen
,
W.
, and
Magin
,
R. L.
,
2016
, “
Connecting Complexity With Spectral Entropy Using the Laplace Transformed Solution to the Fractional Diffusion Equation
,”
Physica A
,
453
, pp.
327
335
.
3.
Chen
,
W.
,
Liang
,
Y.
,
Hu
,
S.
, and
Sun
,
H.
,
2015
, “
Fractional Derivative Anomalous Diffusion Equation Modeling Prime Number Distribution
,”
Fractional Calculus Appl. Anal.
,
18
(
3
), pp. 789–798.
4.
Wei
,
S.
,
Chen
,
W.
, and
Hon
,
Y.-C.
,
2015
, “
Implicit Local Radial Basis Function Method for Solving Two-Dimensional Time Fractional Diffusion Equations
,”
Therm. Sci.
,
19
(
Suppl. 1
), pp.
59
67
.
5.
Ibrahim
,
R. A.
,
2008
, “
Recent Advances in Nonlinear Passive Vibration Isolators
,”
J. Sound Vib.
,
314
(
3–5
), pp.
371
452
.
6.
Bagley
,
R. L.
,
1979
, “
Applications of Generalized Derivatives to Viscoelasticity
,” Ph.D. thesis, Air Force Institute of Technology, Wright Patterson AFB, OH.
7.
Bagley
,
R. L.
, and
Torvik
,
J.
,
1983
, “
Fractional Calculus—A Different Approach to the Analysis of Viscoelastically Damped Structures
,”
AIAA J.
,
21
(
5
), pp.
741
748
.
8.
Bagley
,
R. L.
, and
Torvik
,
P.
,
1983
, “
A Theoretical Basis for the Application of Fractional Calculus to Viscoelasticity
,”
J. Rheol. (1978–Present)
,
27
(
3
), pp.
201
210
.
9.
Rossikhin
,
Y. A.
, and
Shitikova
,
M. V.
,
2010
, “
Application of Fractional Calculus for Dynamic Problems of Solid Mechanics: Novel Trends and Recent Results
,”
ASME Appl. Mech. Rev.
,
63
(
1
), p.
010801
.
10.
Paola, M. D.
,
Fiore, V.
,
Pinnola, F. P.
, and
Valenza, A.
, 2014, “
On the Influence of the Initial Ramp for a Correct Definition of the Parameters of Fractional Viscoelastic Materials
,”
Mech. Mater.
,
69
(1), pp. 63–70.
11.
Wu, C. X.
,
Yuan, J.
, and
Shi, B.
, 2016, “
Stability of Initialization Response of Fractional Oscillators
,”
J. Vibroengineering
,
18
(6), pp. 4148–4154.https://www.researchgate.net/publication/307179899_Stability_of_initialization_response_of_fractional_oscillators
12.
Wei
,
Y.
,
Tse
,
P. W.
,
Du
,
B.
, and
Wang
,
Y.
,
2016
, “
An Innovative Fixed-Pole Numerical Approximation for Fractional Order Systems
,”
ISA Trans.
,
62
, pp.
94
102
.
13.
Ortigueira
,
M. D.
,
2003
, “
On the Initial Conditions in Continuous-Time Fractional Linear Systems
,”
Signal Process.
,
83
(
11
), pp.
2301
2309
.
14.
Sabatier
,
J.
,
Farges
,
C.
, and
Trigeassou
,
J. C.
,
2013
, “
Fractional Systems State Space Description: Some Wrong Ideas and Proposed Solutions
,”
J. Vib. Control
,
20
(
7
), pp.
1076
1084
.
15.
Ortigueira
,
M. D.
, and
Coito
,
F. J.
,
2010
, “
System Initial Conditions vs Derivative Initial Conditions
,”
Comput. Math. Appl.
,
59
(
5
), pp.
1782
1789
.
16.
Hartley
,
T. T.
,
Lorenzo
,
C. F.
,
Trigeassou
,
J. C.
, and
Maamri
,
N.
,
2013
, “
Equivalence of History-Function Based and Infinite-Dimensional-State Initializations for Fractional-Order Operators
,”
ASME J. Comput. Nonlinear Dyn.
,
8
(4), p.
041014
.
17.
Trigeassou
,
J. C.
,
Maamri
,
N.
,
Sabatier
,
J.
, and
Oustaloup
,
A.
,
2011
, “
A Lyapunov Approach to the Stability of Fractional Differential Equations
,”
Signal Process.
,
91
(
3
), pp.
437
445
.
18.
Fukunaga
,
M.
, and
Shimizu
,
N.
,
2004
, “
Role of Prehistories in the Initial Value Problems of Fractional Viscoelastic Equations
,”
Nonlinear Dyn.
,
38
(1–4), pp. 207–220.
19.
Fukunaga
,
M.
,
2002
, “
On Initial Value Problems of Fractional Differential Equations
,”
Int. J. Appl. Math.
,
9
(
2
), pp.
219
236
.https://www.researchgate.net/publication/268312698_On_initial_value_problems_of_fractional_differential_equations
20.
Hartley
,
T. T.
, and
Lorenzo
,
C. F.
,
2002
, “
Control of Initialized Fractional Order Systems
,” NASA Glenn Research Center, Brook Park, OH, Technical Report No.
NASA/TM-2002-211377
.https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20020038571.pdf
21.
Lorenzo
,
C. F.
, and
Hartley
,
T. T.
,
2008
, “
Initialization of Fractional-Order Operators and Fractional Differential Equations
,”
ASME J. Comput. Nonlinear Dyn.
,
3
(
2
), p.
021101
.
22.
Du
,
M. L.
, and
Wang
,
Z. H.
,
2011
, “
Initialized Fractional Differential Equations With Riemann–Liouville Fractional-Order Derivative
,”
Eur. Phys. J.: Spec. Top.
,
193
(
1
), pp.
49
60
.
23.
Trigeassou
,
J. C.
,
Maamri
,
N.
,
Sabatier
,
J.
, and
Oustaloup
,
A.
,
2012
, “
Transients of Fractional-Order Integrator and Derivatives
,”
Signal, Image Video Process.
,
6
(
3
), pp.
359
372
.
24.
Trigeassou
,
J. C.
,
Maamri
,
N.
,
Sabatier
,
J.
, and
Oustaloup
,
A.
,
2012
, “
State Variables and Transients of Fractional Order Differential Systems
,”
Comput. Math. Appl.
,
64
(
10
), pp.
3117
3140
.
25.
Trigeassou
,
J. C.
, and
Maamri
,
N.
,
2011
, “
Initial Conditions and Initialization of Linear Fractional Differential Equations
,”
Signal Process.
,
91
(
3
), pp.
427
436
.
26.
Hartley
,
T. T.
,
Trigeassou
,
J.-C.
,
Lorenzo
,
C. F.
, and
Maamri
,
N.
,
2015
, “
Energy Storage and Loss in Fractional-Order Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
6
), p.
061006
.
27.
Trigeassou
,
J. C.
,
Maamri
,
N.
, and
Oustaloup
,
A.
, 2011, “
Automatic Initialisation of the Caputo Fractional Derivative
,”
50th IEEE Conference on Decision and Control and European Control Conference
(
CDC-ECC
), Orlando, FL, Dec. 12–15, pp. 3362–3368.
28.
Sabatier
,
J.
,
Merveillaut
,
M.
,
Malti
,
R.
, and
Oustaloup
,
A.
,
2010
, “
How to Impose Physically Coherent Initial Conditions to a Fractional System?
,”
J. Sci. Commun.
,
15
(
5
), pp.
1318
1326
.
29.
Lorenzo
,
C. F.
,
Hartley
,
T. T.
, and
Adams
,
J. L.
,
2009
, “
The Inverted Initialization Problem for Fractional-Order Derivatives
,”
Phys. Scr.
,
T136
, p.
014029
.
30.
Du
,
B.
,
Wei
,
Y.
,
Liang
,
S.
, and
Wang
,
Y.
,
2016
, “
Estimation of Exact Initial States of Fractional Order Systems
,”
Nonlinear Dyn.
,
86
(
3
), pp.
2061
2070
.
You do not currently have access to this content.