In our former work developed by Yang et al. (2017, “Enhancing the Weak Signal With Arbitrary High-Frequency by Vibrational Resonance in Fractional-Order Duffing Oscillators,” ASME J. Comput. Nonlinear Dyn., 12(5), p. 051011), we put forward the rescaled vibrational resonance (VR) method in fractional duffing oscillators to amplify a weak signal with arbitrary high frequency. In the present work, we propose another method named as twice sampling VR to achieve the same goal. Although physical processes of two discussed methods are different, the results obtained by them are identical completely. Besides the two external signals excitation case, the validity of the new proposed method is also verified in the system that is excited by an amplitude modulated signal. Further, the dynamics of the system reveals that the resonance performance, i.e., the strength and the pattern, depends on the fractional order closely.

References

References
1.
Gammaitoni
,
L.
,
Hänggi
,
P.
,
Jung
,
P.
, and
Marchesoni
,
F.
,
1998
, “
Stochastic Resonance
,”
Rev. Mod. Phys.
,
70
(
1
), pp.
223
287
.
2.
Landa
,
P. S.
, and
McClintock
,
P. V. E.
,
2000
, “
Vibrational Resonance
,”
J. Phys. A: Math. Gen.
,
33
(
45
), pp.
L433
L438
.
3.
He
,
Q.
,
Wang
,
J.
,
Liu
,
Y.
,
Dai
,
D.
, and
Kong
,
F.
,
2012
, “
Multiscale Noise Tuning of Stochastic Resonance for Enhanced Fault Diagnosis in Rotating Machines
,”
Mech. Syst. Signal Process.
,
28
, pp.
443
457
.
4.
Li
,
J.
,
Chen
,
X.
,
Du
,
Z.
,
Fang
,
Z.
, and
He
,
Z.
,
2013
, “
A New Noise-Controlled Second-Order Enhanced Stochastic Resonance Method With Its Application in Wind Turbine Drivetrain Fault Diagnosis
,”
Renewable Energy
,
60
, pp.
7
19
.
5.
Wang
,
J.
,
He
,
Q.
, and
Kong
,
F.
,
2015
, “
Adaptive Multiscale Noise Tuning Stochastic Resonance for Health Diagnosis of Rolling Element Bearings
,”
IEEE Trans. Instrum. Meas.
,
64
(
2
), pp.
564
577
.
6.
Lang
,
R.
,
Li
,
X.
,
Gao
,
F.
, and
Yang
,
L.
,
2016
, “
Re-Scaling and Adaptive Stochastic Resonance as a Tool for Weak GNSS Signal Acquisition
,”
J. Syst. Eng. Electron.
,
27
(
2
), pp.
290
296
.
7.
Lu
,
S.
,
He
,
Q.
, and
Kong
,
F.
,
2015
, “
Effects of Underdamped Step-Varying Second-Order Stochastic Resonance for Weak Signal Detection
,”
Digit. Signal Process.
,
36
, pp.
93
103
.
8.
Liu
,
X.
,
Liu
,
H.
,
Yang
,
J.
,
Litak
,
G.
,
Cheng
,
G.
, and
Han
,
S.
,
2017
, “
Improving the Bearing Fault Diagnosis Efficiency by the Adaptive Stochastic Resonance in a New Nonlinear System
,”
Mech. Syst. Signal Process.
,
96
, pp.
58
76
.
9.
Huang
,
D.
,
Yang
,
J.
,
Zhang
,
J.
, and
Liu
,
H.
,
2017
, “
An Improved Adaptive Stochastic Resonance Method for Improving the Efficiency of Bearing Faults Diagnosis
,”
Proc. Inst. Mech. Eng. C
, epub.http://journals.sagepub.com/doi/abs/10.1177/0954406217719924
10.
Liu
,
H. G.
,
Liu
,
X. L.
,
Yang
,
J. H.
,
Sanjuán
,
M. A. F.
, and
Cheng
,
G.
,
2017
, “
Detecting the Weak High-Frequency Character Signal by Vibrational Resonance in the Duffing Oscillator
,”
Nonlinear Dyn.
,
89
(
4
), pp.
2621
2628
.
11.
Yang
,
J. H.
,
Sanjuán
,
M. A.
, and
Liu
,
H. G.
,
2017
, “
Enhancing the Weak Signal With Arbitrary High-Frequency by Vibrational Resonance in Fractional-Order Duffing Oscillators
,”
ASME J. Comput. Nonlinear Dyn.
,
12
(
5
), p.
051011
.
12.
Leng
,
Y. G.
,
Wang
,
T. Y.
,
Guo
,
Y.
,
Xu
,
Y. G.
, and
Fan
,
S. B.
,
2007
, “
Engineering Signal Processing Based on Bistable Stochastic Resonance
,”
Mech. Syst. Signal Process.
,
21
(
1
), pp.
138
150
.
13.
Li
,
Q.
,
Wang
,
T.
,
Leng
,
Y.
,
Wand
,
W.
, and
Wang
,
G.
,
2007
, “
Engineering Signal Processing Based on Adaptive Step-Changed Stochastic Resonance
,”
Mech. Syst. Signal Process.
,
21
(
5
), pp.
2267
2279
.
14.
Leng
,
Y. G.
, and
Wang
,
T. Y.
,
2003
, “
Numerical Research of Twice Sampling Stochastic Resonance for the Detection of a Weak Signal Submerged in a Heavy Noise
,”
Acta Phys. Sin.
,
52
(
10
), pp.
2432
2437
.
15.
Nadal
,
E.
,
Aguado
,
J. V.
,
Abisset-Chavanne
,
E.
,
Chinesta
,
F.
,
Keunings
,
R.
, and
Cueto
,
E.
,
2017
, “
A Physically-Based Fractional Diffusion Model for Semi-Dilute Suspensions of Rods in a Newtonian Fluid
,”
Appl. Math. Model.
,
51
, pp.
58
67
.
16.
Hamza
,
F.
,
El-Latief
,
A. A.
, and
Khatan
,
W.
,
2017
, “
Thermomechanical Fractional Model of TEMHD Rotational Flow
,”
Plos One
,
12
(
1
), p.
e0168530
.
17.
Kumar
,
S.
,
Kumar
,
A.
, and
Odibat
,
Z. M.
,
2017
, “
A Nonlinear Fractional Model to Describe the Population Dynamics of Two Interacting Species
,”
Math. Method Appl. Sci.
,
40
(
11
), pp.
4134
4148
.
18.
Liu
,
F. J.
,
Wang
,
P.
,
Zhang
,
Y.
,
Liu
,
H. Y.
, and
He
,
J. H.
,
2016
, “
A Fractional Model for Insulation Clothings With Cocoon-like Porous Structure
,”
Therm. Sci.
,
20
(
3
), pp.
779
784
.
19.
Song
,
L.
,
2017
, “
A Space-Time Fractional Derivative Model for European Option Pricing With Transaction Costs in Fractal Market
,”
Chaos, Solitons Fractals
,
103
, pp.
123
130
.
20.
Bodo
,
B.
,
Mvogo
,
A.
, and
Morfu
,
S.
,
2017
, “
Fractional Dynamical Behavior of Electrical Activity in a Model of Pancreatic β-Cells
,”
Chaos, Solitons Fractals
,
102
, pp.
426
432
.
21.
Masoud
,
S.
,
Bahraini
,
S.
,
Eghtesad
,
M.
,
Farid
,
M.
, and
Ghavanloo
,
E.
,
2013
, “
Large Deflection of Viscoelastic Beams Using Fractional Derivative Model
,”
J. Mech. Sci. Technol.
,
27
(
4
), pp.
1063
1070
.
22.
Amoura
,
K.
,
Mansouri
,
R.
,
Bettayeb
,
M.
, and
Al-Saggaf
,
U. M.
,
2016
, “
Closed-Loop Step Response for Tuning PID-Fractional-Order-Filter Controllers
,”
ISA Trans.
,
64
, pp.
247
257
.
23.
Sondhi
,
S.
, and
Hote
,
Y. V.
,
2014
, “
Fractional Order PID Controller for Load Frequency Control
,”
Energy Convers. Manage.
,
85
, pp.
343
353
.
24.
Zamani
,
A. A.
,
Tavakoli
,
S.
, and
Etedali
,
S.
,
2017
, “
Fractional Order PID Control Design for Semi-Active Control of Smart Base-Isolated Structures: A Multi-Objective Cuckoo Search Approach
,”
ISA Trans.
,
67
, pp.
222
232
.
25.
Tripathy
,
M. C.
,
Mondal
,
D.
,
Biswas
,
K.
, and
Sen
,
S.
,
2015
, “
Experimental Studies on Realization of Fractional Inductors and Fractional-Order Bandpass Filters
,”
Int. J. Circuit Theory Appl.
,
43
(
9
), pp.
1183
1196
.
26.
Aslam
,
M. S.
, and
Raja
,
M. A. Z.
,
2015
, “
A New Adaptive Strategy to Improve Online Secondary Path Modeling in Active Noise Control Systems Using Fractional Signal Processing Approach
,”
Signal Process.
,
107
, pp.
433
443
.
27.
He
,
N.
,
Wang
,
J. B.
,
Zhang
,
L. L.
, and
Lu
,
K.
,
2015
, “
An Improved Fractional-Order Differentiation Model for Image Denoising
,”
Signal Process.
,
112
, pp.
180
188
.
28.
Tsirimokou
,
G.
, and
Psychalinos
,
C.
,
2014
, “
Ultra-Low Voltage Fractional-Order Differentiator and Integrator Topologies: An Application for Handling Noisy ECGs
,”
Analog Integr. Circuits Signal Process.
,
81
(
2
), pp.
393
405
.
29.
Monje
,
C. A.
,
Chen
,
Y. Q.
,
Vinagre
,
B. M.
,
Xue
,
D.
, and
Feliu
,
V.
,
2010
,
Fractional-Order Systems and Controls: Fundamentals and Applications
,
Springer-Verlag
,
London
, pp.
10
12
.
30.
Yang
,
J. H.
, and
Zhu
,
H.
,
2012
, “
Vibrational Resonance in Duffing Systems With Fractional-Order Damping
,”
Chaos
,
22
(
1
), p.
013112
.
31.
Blekhman
,
I. I.
,
2000
,
Vibrational Mechanics
,
World Scientific
,
Singapore
.
32.
Thomsen
,
J. J.
,
2003
,
Vibrations and Stability
,
Springer-Verlag
,
Berlin
.
33.
Nayfeh
,
A. H.
, and
Balachandran
,
B.
,
2008
,
Applied Nonlinear Dynamics: Analytical, Computational and Experimental Methods
,
Wiley
,
Weinheim, Germany
.
34.
Hu
,
H. Y.
,
2000
,
Applied Nonlinear Dynamics
,
China Aeronautical Industry Press
,
Beijing, China
.
35.
Liu
,
Y.
,
Dai
,
Z.
,
Lu
,
S.
,
Liu
,
F.
,
Zhao
,
J.
, and
Shen
,
J.
,
2017
, “
Enhanced Bearing Fault Detection Using Step-Varying Vibrational Resonance Based on Duffing Oscillator Nonlinear System
,”
Shock Vib.
,
2017
, p.
5716296
.
You do not currently have access to this content.