The dynamic vehicle–track interactions are complex processes due to the highly nonlinear terms and spatially varying excitations in vehicle design, track maintenance, dynamic prediction, etc. Therefore, it is of importance to clarify the key factors affecting the dynamic behaviors of system components. In this paper, a comprehensive model is presented, which is capable of analyzing the global sensitivity of vehicle–track interactions. In this model, the vehicle–track interactions considering the nonlinear wheel–rail contact geometries are depicted in three-dimensional (3D) space, and then the approaches for global sensitivity analysis (GSA) and time–frequency analysis are combined with the dynamic model. In comparison to the local sensitivity analysis, the proposed model has accounted for the coupling contributions of various factors. Thus, it is far more accurate and reliable to evaluate the critical factors dominating the vehicle–track interactions. Based on the methods developed in the present study, numerical examples have been conducted to draw the following marks: track irregularities possess the dominant role in guiding the dynamic performance of vehicle–track systems, besides, the vertical stiffness of primary suspension and rail pads also shows significant influence on vertical acceleration of the car body and the wheel–rail vertical force, respectively. Finally, a method is developed to precisely extract the characteristic wavelengths and amplitude limits of track irregularities.

References

1.
Zhai, W., and Sun, X.,
1993
, “
Analysis and Design of Vertical Dynamic Parameters of Wheel/Rail System With Low Dynamic Interactions
,”
J. China Railway Soc.
,
15
(
3
), pp.
1
10
.
2.
Zhai
,
W.
, and
Sun
,
X.
,
1994
, “
A Detailed Model for Investigating Vertical Interaction Between Railway Vehicle and Track
,”
Veh. Syst. Dyn.
,
23
(
Suppl. 1
), pp.
603
615
.
3.
Kaewunruen
,
S.
, and
Remennikov
,
A. M.
,
2006
, “
Sensitivity Analysis of Free Vibration Characteristics of an In Situ Railway Concrete Sleeper to Variations of Rail Pad Parameters
,”
J. Sound Vib.
,
298
, pp.
453
461
.
4.
Ilias
,
H.
,
1999
, “
The Influence of Railpad Stiffness on Wheelset/Track Interaction and Corrugation Growth
,”
J. Sound Vib.
,
227
, pp.
935
948
.
5.
Kumaran
,
G.
,
Menon
,
D.
, and
Krishman Nair
,
K.
,
2003
, “
Dynamic Studies of Railtrack Sleepers in a Track Structure System
,”
J. Sound Vib.
,
268
, pp.
485
501
.
6.
Suarez
,
B.
,
Felez
,
J.
,
Maroto
,
J.
, and
Rodriguez
,
P.
,
2013
, “
Sensitivity Analysis to Assess the Influence of the Inertial Properties of Railway Vehicle Bodies on the Vehicle's Dynamic Behavior
,”
Veh. Syst. Dyn.
,
51
(
2
), pp.
251
279
.
7.
Zakeri
,
J. A.
,
Feizi
,
M. M.
,
Shadfar
, M.
, and
Naeimi
, M.
,
2017
, “
Sensitivity Analysis on Dynamic Response of Railway Vehicle and Rid Index Over Curved Bridges
,”
Proc. Inst. Mech. Eng. Part K
,
231
(
1
), pp.
266
277
.
8.
Ferrara
,
R.
,
Leonardi
,
G.
, and
Jourdan
,
F.
,
2013
, “
A Contact-Area Model for Rail-Pads Connections in 2-D Simulations: Sensitivity Analysis of Train-Induced Vibrations
,”
Veh. Syst. Dyn.
,
51
(
9
), pp.
1342
1362
.
9.
Haug
,
E. J.
,
Wehager
,
R.
, and
Bannan
,
N. C.
,
1981
, “
Design Sensitivity Analysis of Planar Mechanism and Dynamics
,”
ASEM J. Mech. Des.
,
103
, pp.
560
570
.
10.
Eberhard, P., and Dignath, F., 2000, “
Control Optimization of Multibody Systems Using Point- and Piecewise Defined Optimization Criteria
,”
Eng. Optim.
,
32
(4), pp. 417–438.
11.
Iman
,
R. L.
, and
Hora
,
S. C.
,
1990
, “
A Robust Measure of Uncertainty Importance for Use in Fault Tree System Analysis
,”
Risk Anal.
,
10
, pp.
401
406
.
12.
Morris
,
M. D.
,
1991
, “
Factorial Sampling Plans for Preliminary Computational Experiments
,”
Technometrics
,
33
, pp.
161
174
.
13.
McKay
,
M. D.
,
1996
, “Variance-Based Methods for Assessing Uncertainty Importance,” Los Alamos National Laboratory, Los Alamos, NM, Report No. LA-UR-96-2695.
14.
Sobol′
,
I. M.
,
2001
, “
Global Sensitivity Indices for Nonlinear Mathematical Models and Their Monte Carlo Estimates
,”
Math. Comput. Simul.
,
55
(1–3), pp.
271
280
.
15.
Saltelli
,
A.
,
Tarantola
,
S.
, and
Chan
,
K. P.-S.
,
1999
, “
A Quantitative Model-Independent Method for Global Sensitivity Analysis of Model Output
,”
Technometrics
,
41
(
1
), pp.
39
56
.
16.
Zhang
,
Y.
,
Zhang
,
W.
,
Ma
,
T.
, and
Tang
,
T.
,
2015
, “
Optimization Design Method of Non-Linear Complex System Based on Global Sensitivity Analysis and Dynamic Moetamodel
,”
J. Mech. Eng.
,
51
(
4
), pp.
126
131
.
17.
Tian
,
W.
,
2013
, “
A Review of Sensitivity Analysis Methods in Building Energy Analysis
,”
Renewable Sustainable Energy Rev.
,
20
, pp.
411
419
.
18.
Kiparissides
,
A.
,
Kucherenko
,
S. S.
,
Mantalaris
,
A.
, and
Pistikopoulos
,
E. N.
,
2009
, “
Global Sensitivity Analysis Challenges in Biological Systems Modeling
,”
Ind. Eng. Chem. Res.
,
48
(
15
), pp.
7168
7180
.
19.
Centeno Drehmer
,
L. R.
,
Paucar Casas
,
W. J.
, and
Gomes
,
H. M.
,
2015
, “
Parameters Optimization of a Vehicle Suspension System Using a Particle Swarm Optimization Algorithm
,”
Veh. Syst. Dyn.
,
53
(
4
), pp.
449
474
.
20.
Xu
,
L.
, and
Zhai
,
W.
,
2017
, “
Stochastic Analysis Model for Vehicle-Track Coupled Systems Subject to Earthquakes and Track Random Irregularities
,”
J. Sound Vib.
,
407
, pp.
209
225
.
21.
Perrin
,
G.
,
Soize
,
C.
,
Duhamel
,
D.
, and
Funfschilling
,
C.
,
2015
, “
Quantification of the Influence of the Track Geometry Variability on the Train Dynamics
,”
Mech. Syst. Signal Process.
,
60–61
, pp.
945
957
.
22.
Li
,
Z.
,
Zhao
,
X.
, and
Dollevoet
,
R.
,
2017
, “
An Approach to Determine a Critical Size for Rolling Contact Fatigue Initiating From Rail Surface Defects
,”
Int. J. Rail Transp.
,
5
(
1
), pp.
16
37
.
23.
Wei
,
Z.
,
Li
,
Z.
,
Qian
,
Z.
,
Chen
,
R.
, and
Dollevoet
,
R.
,
2016
, “
3D FE Modelling and Validation of Frictional Contact With Partial Slip in Compression-Shift-Rolling Evolution
,”
Int. J. Rail Transp.
,
4
(
1
), pp.
20
36
.
24.
Zhai
,
W.
,
2015
,
Vehicle-Track Coupled Dynamics
, 4th ed.,
Science Press
,
Beijing, China
.
25.
Xu
,
L.
, and
Zhai
,
W.
,
2017
, “
A New Model for Temporal-Spatial Stochastic Analysis of Vehicle-Track Coupled Systems
,”
Veh. Syst. Dyn.
,
55
(
3
), pp.
427
448
.
26.
Xu
,
L.
, and
Zhai
,
W.
,
2017
, “
A Novel Model for Determining the Amplitude-Wavelength Limits of Track Irregularities Accompanied by a Reliability Assessment in Railway Vehicle-Track Dynamics
,”
Mech. Syst. Signal Process.
,
86
, pp.
260
277
.
27.
Zeng
,
Q. Y.
,
2000
, “
The Principle of a Stationary Value of Total Potential Energy of Dynamic System
,”
J. Huazhong Univ. Sci. Technol.
,
28
(
1
), pp.
1
3
.http://en.cnki.com.cn/Article_en/CJFDTOTAL-HZLG200001000.htm
28.
Shen
,
Z. Y.
,
Hedrick
,
J. K.
, and
Elkins
,
J. A.
,
1983
, “
A Comparison of Alternative Creep Force Models for Rail Vehicle Dynamic Analysis
,”
Eighth IAVSD Symposium, Cambridge
, MA, Aug. 15–19, pp.
591
605
.
29.
Chen
,
G.
, and
Zhai
,
W. M.
,
2004
, “
A New Wheel/Rail Spatially Dynamic Coupling Model and Its Verification
,”
Veh. Syst. Dyn.
,
41
(
4
), pp.
301
322
.
30.
Cukier
,
R. I.
,
Fortuin
,
C. M.
,
Shuler
,
K. E.
,
Petschek
,
A. G.
, and
Schaibly
,
J. H.
,
1973
, “
Study of the Sensitivity of Coupled Reaction Systems to Uncertainties in Rate Coefficients. I. Theory
,”
J. Chem. Phys.
,
59
(8), pp.
3873
3878
.
31.
Schaibly
,
J. H.
, and
Shuler
,
K. E.
,
1973
, “
Study of the Sensitivity of Coupled Reaction Systems to Uncertainties in Rate Coefficients: Part II—Applications
,”
J. Chem. Phys.
,
59
, pp.
3879
3888
.
32.
Wely
,
H.
,
1938
, “
Mean Motion,” Am. J. Math.
,
60
, pp.
89
896
.
33.
Saltelli
,
A.
,
Annoni
,
P.
,
Azzini
,
I.
,
Campolongo
,
F.
,
Ratto
,
M.
, and
Tarantola
,
S.
,
2010
, “
Variance Based Sensitivity Analysis of Model Output. Design and Estimator for the Total Sensitivity Index
,”
Comput. Phys. Commun.
,
181
, pp.
259
270
.
34.
Xu
,
L.
,
Zhai
,
W.
, and
Gao
,
J.
,
2017
, “
A Probabilistic Model for Track Random Irregularities in Vehicle/Track Coupled Dynamics
,”
Appl. Math. Modell.
,
51
, pp.
145
158
.
35.
Xu
,
L.
, and
Chen
,
X.
,
2014
, “
Analysis on Track Characteristic Irregularity Based on Wavelet and Wigner-Hough Transform
,”
J. China Railway Soc.
,
36
(
5
), pp.
88
95
.
36.
Wang
,
M.
, and
Shao
,
M.
,
1997
,
Finite Element Method: Basic Principle and Numerical Method
, 2nd ed.,
Tsinghua University Press
,
Beijing, China
.
You do not currently have access to this content.