In-plane vibration of cyclically symmetric ring structures is examined with emphasis on the comparison of instabilities estimated by complete and simplified models. The aim of this paper is to understand under what conditions and to what degree the simplified models can approach the complete model. Previous studies develop time-variant models and employ perturbation method by assuming weak support. This work casts the rotating-load problem into a nonrotating load problem. A complete model with time-invariant coefficients is developed in rotating-support-fixed frame, where the bending and extensional deformations are incorporated. It is then reduced into two simplified ones based on different deformation restrictions. Due to the time-invariant effect observed in the rotating-support-fixed frame, the eigenvalues are formulated directly by using classical vibration theory and compared based on a sample structure. The comparisons verify that the two types of models are comparable only for weak support. Furthermore, the simplified models cannot accurately predict all unstable behaviors in particular for strong support. The eigenvalues are different even in comparable regions. For verification purpose, the time-invariant models are transformed into time-variant ones in the inertial frame, based on which instabilities are estimated by using Floquét theory. Consistence between the time-invariant and -variant models verifies the comparisons.

References

1.
Ouyang
,
H.
,
2011
, “
Moving-Load Dynamic Problems: A Tutorial (With a Brief Overview)
,”
Mech. Syst. Signal Process.
,
25
(
6
), pp.
2039
2060
.
2.
Charnley
,
T.
,
Perrin
,
R.
,
Mohanan
,
V.
, and
Banu
,
H.
,
1989
, “
Vibrations of Thin Rings of Rectangular Cross-Section
,”
J. Sound Vib.
,
134
(
3
), pp.
455
488
.
3.
Eley
,
R.
,
Fox
,
C. H. J.
, and
McWilliam
,
S.
,
2000
, “
Coriolis Coupling Effects on the Vibration of Rotating Rings
,”
J. Sound Vib.
,
238
(
3
), pp.
459
480
.
4.
Kim
,
W.
, and
Chung
,
J.
,
2002
, “
Free Non-Linear Vibration of a Rotating Thin Ring With the In-Plane and Out-of-Plane Motions
,”
J. Sound Vib.
,
258
(
1
), pp.
167
178
.
5.
Rourke
,
A. K.
,
McWilliam
,
S.
, and
Fox
,
C. H. J.
,
2005
, “
Frequency Trimming of a Vibrating Ring-Based Multi-Axis Rate Sensor
,”
J. Sound Vib.
,
280
(
3–5
), pp.
495
530
.
6.
Hogan
,
F. R.
, and
Forbes
,
J. R.
,
2015
, “
Modeling of a Rolling Flexible Circular Ring
,”
ASME J. Appl. Mech.
,
82
(
11
), p.
111003
.
7.
Lesaffre
,
N.
,
Sinou
,
J. J.
, and
Thouverez
,
F.
,
2007
, “
Stability Analysis of Rotating Beams Rubbing on an Elastic Circular Structure
,”
J. Sound Vib.
,
299
(
4–5
), pp.
1005
1032
.
8.
Cooley
,
C. G.
, and
Parker
,
R. G.
,
2014
, “
Vibration of High-Speed Rotating Rings Coupled to Space-Fixed Stiffnesses
,”
J. Sound Vib.
,
333
(
12
), pp.
2631
2648
.
9.
Xie
,
B.
,
Wang
,
S. Y.
,
Wang
,
Y. Y.
,
Zhao
,
Z. F.
, and
Xiu
,
J.
,
2015
, “
Magnetically Induced Rotor Vibration in Dual-Stator Permanent Magnet Motors
,”
J. Sound Vib.
,
347
, pp.
184
199
.
10.
Liu
,
C. G.
,
Cooley
,
C. G.
, and
Parker
,
R. G.
,
2017
, “
Parametric Instability of Spinning Elastic Rings Excited by Fluctuating Space-Fixed Stiffnesses
,”
J. Sound Vib.
,
400
, pp.
533
549
.
11.
Huang
,
S. C.
, and
Soedel
,
W.
,
1987
, “
Effects of Coriolis Acceleration on the Free and Forced In-Plane Vibration of Rotating Rings on Elastic Foundation
,”
J. Sound Vib.
,
115
(
2
), pp.
253
274
.
12.
Huang
,
S. C.
, and
Soedel
,
W.
,
1987
, “
Response of Rotating Rings to Harmonic and Periodic Loading and Comparison With the Inverted Problem
,”
J. Sound Vib.
,
118
(
2
), pp.
253
270
.
13.
Huang
,
D. S.
,
Tang
,
L.
, and
Cao
,
R.
,
2013
, “
Free Vibration Analysis of Planar Rotating Rings by Wave Propagation
,”
J. Sound Vib.
,
332
(
20
), pp.
4979
4997
.
14.
Wu
,
X. H.
, and
Parker
,
R. G.
,
2006
, “
Vibration of Rings on a General Elastic Foundation
,”
J. Sound Vib.
,
295
(
1–2
), pp.
194
213
.
15.
Canchi
,
S. V.
, and
Parker
,
R. G.
,
2006
, “
Parametric Instability of a Circular Ring Subjected to Moving Springs
,”
J. Sound Vib.
,
293
(
1–2
), pp.
360
379
.
16.
Canchi
,
S. V.
, and
Parker
,
R. G.
,
2008
, “
Effect of Ring-Planet Mesh Phasing and Contact Ratio on the Parametric Instabilities of a Planetary Gear Ring
,”
ASME J. Mech. Des.
,
130
(
1
), p.
014501
.
17.
Bisegna
,
P.
, and
Caruso
,
G.
,
2007
, “
Frequency Split and Vibration Localization in Imperfect Rings
,”
J. Sound Vib.
,
306
(
3–5
), pp.
691
711
.
18.
Kim
,
S. B.
,
Na
,
Y. H.
, and
Kim
,
J. H.
,
2010
, “
Thermoelastic Damping Effect on in-Extensional Vibration of Rotating Thin Ring
,”
J. Sound Vib.
,
329
(
9
), pp.
1227
1234
.
19.
Sadeghi
,
M.
, and
Hosseinzadeh
,
V. A.
,
2013
, “
Parametric Excitation of a Thin Ring Under Time-Varying Initial Stress; Theoretical and Numerical Analysis
,”
Nonlinear Dyn.
,
74
(
3
), pp.
733
743
.
20.
Wang
,
S. Y.
,
Xiu
,
J.
,
Gu
,
J. P.
,
Xu
,
J. Y.
,
Liu
,
J. P.
,
Xiu
,
J.
, and
Shen
,
Z. G.
,
2010
, “
Prediction and Suppression of Inconsistent Natural Frequency and Mode Coupling of a Cylindrical Ultrasonic Stator
,”
Proc. Inst. Mech. Eng. C.
,
224
(
9
), pp.
1853
1862
.
21.
Zhao
,
Z. F.
, and
Wang
,
S. Y.
,
2016
, “
Parametric Instability of Dual-Ring Structure With Motionless and Moving Supports
,”
ASME J. Comput. Nonlin. Dyn.
,
11
(1), p.
014501
.
22.
Wang
,
Y. Y.
,
Wang
,
S. Y.
, and
Zhu
,
D. H.
,
2016
, “
Dual-Mode Frequency Splitting Elimination of Ring Periodic Structures Via Feature Shifting
,”
Proc. Inst. Mech. Eng. C.
,
230
(
18
), pp.
3347
3357
.
23.
Zhao
,
Z. F.
,
Wang
,
S. Y.
, and
Xiu
,
J.
,
2015
, “
Parametric Vibration of an Elastic Structure With Stationary and Rotating Rings Subjected to Traveling Loads
,”
J. Sound Vib.
,
358
, pp.
334
355
.
24.
Zhang
,
D. S.
,
Wang
,
S. Y.
, and
Liu
,
J. P.
,
2014
, “
Analytical Prediction for Free Response of Rotationally Ring-Shaped Periodic Structures
,”
ASME J. Vib. Acoust.
,
136
(
4
), p.
041016
.
25.
Wang
,
S. Y.
,
Sun
,
W. J.
, and
Wang
,
Y. Y.
,
2016
, “
Instantaneous Mode Contamination and Parametric Combination Instability of Spinning Cyclically Symmetric Ring Structures With Expanding Application to Planetary Gear Ring
,”
J. Sound Vib.
,
375
, pp.
366
385
.
26.
Kim
,
J. H.
,
Kang
,
S. J.
, and
Kim
,
J. H.
,
2017
, “
Splitting of Quality Factors for Micro-Ring With Arbitrary Point Masses
,”
J. Sound Vib.
,
395
, pp.
317
327
.
27.
Sun
,
W. J.
,
Wang
,
S. Y.
,
Xia
,
Y.
, and
Zhang
,
P. H.
,
2017
, “
Natural Frequency Splitting and Principal Instability of Rotating Cyclic Ring Structures
,”
Proc. Inst. Mech. Eng. C.
, epub.
28.
Ye
,
X. Q.
,
Chen
,
Y. B.
,
Chen
,
D. C.
,
Huang
,
K. Y.
, and
Hu
,
Y. C.
,
2012
, “
The Electromechanical Behavior of a Micro-Ring Driven by Traveling Electrostatic Force
,”
Sensor
,
12
(
2
), pp.
1170
1180
.
29.
Li
,
Y. J.
,
Yu
,
T.
, and
Hu
,
Y. C.
,
2014
, “
The Stiffness Variation of a Micro-Ring Driven by a Traveling Piecewise-Electrode
,”
Sensor
,
14
(
9
), pp.
17256
17274
.
30.
Cooley
,
C. G.
, and
Parker
,
R. G.
,
2015
, “
Limitations of an Inextensible Model for the Vibration of High-Speed Rotating Elastic Rings With Attached Space-Fixed Discrete Stiffnesses
,”
Eur. J. Mech. A-Solid
,
54
, pp.
187
197
.
31.
Wang
,
S. Y.
,
Zhang
,
P. H.
, and
Sun
,
W. J.
,
2017
, “
Comparison of Complete and Simplified Models in Terms of Eigenvalues of Cyclically Symmetric Ring Structures
,”
J. Vib. Control
, epub.
32.
Sinha
,
S. C.
, and
Wu
,
D. H.
,
1991
, “
An Efficient Computational Scheme for the Analysis of Periodic Systems
,”
J. Sound Vib.
,
151
(
1
), pp.
91
117
.
33.
Sinha
,
S. C.
,
Wu
,
D. H.
,
Juneja
,
V.
, and
Joseph
,
P.
,
1993
, “
Analysis of Dynamic Systems With Periodically Varying Parameters Via Chebyshev Polynomials
,”
ASME J. Vib. Acoust.
,
115
(
1
), pp.
96
102
.
34.
Huang
,
D. S.
,
Zhang
,
Y. Y.
, and
Shao
,
H. X.
,
2017
, “
Free Response Approach in a Parametric System
,”
Mech. Syst. Signal Process.
,
91
, pp.
313
325
.
35.
Zhu
,
W. D.
, and
Ni
,
J.
,
2000
, “
Energetics and Stability of Translating Media With an Arbitrarily Varying Length
,”
ASME J. Vib. Acoust.
,
122
(
3
), pp.
295
304
.
36.
Zhu
,
W. D.
, and
Zheng
,
N. A.
,
2008
, “
Exact Response of a Translating String With Arbitrarily Varying Length Under General Excitation
,”
ASME J. Appl. Mech.
,
75
(
3
), p.
031003
.
37.
Wang
,
S. Y.
,
Huo
,
M. N.
,
Zhang
,
C.
,
Liu
,
J. P.
,
Song
,
Y. M.
,
Cao
,
S. Q.
, and
Yang
,
Y. H.
,
2011
, “
Effect of Mesh Phase on Wave Vibration of Spur Planetary Ring Gear
,”
Eur. J. Mech. A-Solid
,
30
(
6
), pp.
820
827
.
38.
Xia
,
Y.
,
Wang
,
S. Y.
,
Sun
,
W. J.
, and
Xiu
,
J.
,
2017
, “
Analytical Estimation on Divergence and Flutter Vibrations of Symmetrical Three-Phase Induction Stator Via Field-Synchronous Coordinates
,”
J. Sound Vib.
,
386
, pp.
407
420
.
You do not currently have access to this content.