The effect of wind disturbances on the stability of six-rotor unmanned aerial vehicles (UAVs) was investigated, exploring the various disturbances in different directions. The simulation model-based Euler–Poincare equation was established to investigate the spectra of Lyapunov exponents. Next, the value of the Lyapunov exponents was used to evaluate the stability of the systems. The results obtained show that the various speeds of rotors are optimized to keep up the stability after disturbances. In addition, the flight experiment with the hitting gust has been carried out to verify the validity and accuracy of the simulation results.

References

1.
Bai
,
Y. Q.
,
Liu
,
H.
,
Shi
,
Z. Y.
, and Zhong, Y. S.,
2012
, “
Robust Flight Control of Six-Rotor Unmanned Air Vehicles
,”
Robot
,
34
(
5
), pp.
519
524
.
2.
Deittert
,
M.
,
Richards
,
A.
,
Toomer
,
C. A.
, and
Pipe
,
A.
,
2009
, “
Engineless UAV Propulsion by Dynamic Soaring
,”
J. Guid. Control Dyn.
,
32
(
5
), pp.
1446
1457
.
3.
Ramsdell
,
J. V.
,
1978
, “
Wind Shear Fluctuations Downwind of Large Surface Roughness Elements
,”
J. Appl. Meteorol.
,
17
(
4
), pp.
436
443
.
4.
Neumann
,
P. P.
, and
Bartholmai
,
M.
,
2015
, “
Real-Time Wind Estimation on a Micro Unmanned Aerial Vehicle Using Its Inertial Measurement Unit
,”
Sens. Actuators, A
,
235
, pp.
300
310
.
5.
Ding
,
L.
,
Wu
,
H. T.
, and
Yao
,
Y.
,
2015
, “
Chaotic Artificial Bee Colony Algorithm for System Identification of a Small-Scale Unmanned Helicopter
,”
Int. J. Aerosp. Eng.
,
2015
, pp.
1
11
.
6.
Liu
,
C. J.
,
McAree
,
O.
, and
Chen
,
W. H.
,
2013
, “
Path-Following Control for Small Fixed-Wing Unmanned Aerial Vehicles Under Wind Disturbances
,”
Int. J. Robust Nonlinear Control
,
23
(
15
), pp.
1682
1698
.
7.
Cabecinhas
,
D.
,
Cunha
,
R.
, and
Silvestre
,
C.
,
2015
, “
A Globally Stabilizing Path Following Controller for Rotorcraft With Wind Disturbance Rejection
,”
IEEE Trans. Control Syst. Technol.
,
23
(
2
), pp.
708
714
.
8.
Bambang
,
S.
,
Naoki
,
U.
, and
Shigenori
,
S.
,
2016
, “
Least Square Based Sliding Mode Control for a Quad-Rotor Helicopter and Energy Saving by Chattering Reduction
,”
Mech. Syst. Signal Process.
,
66–67
, pp.
769
784
.
9.
Lei
,
X. S.
,
Bai
,
L.
,
Du
,
Y. H.
,
Miao
,
C. X.
,
Chen
,
Y.
, and
Wang
,
T. M.
,
2011
, “
A Small Unmanned Polar Research Aerial Vehicle Based on the Composite Control Method
,”
Mechatronics
,
21
(
5
), pp.
821
830
.
10.
Kladis
,
G. P.
,
Economou
,
J. T.
,
Knowles
,
K.
,
Lauber
,
J.
, and
Guerra
,
T. M.
,
2011
, “
Energy Conservation Based Fuzzy Tracking for Unmanned Aerial Vehicle Missions Under a Priori Known Wind Information
,”
Eng. Appl. Artif. Intell.
,
24
(
2
), pp.
278
294
.
11.
Sun
,
Y.
, and
Wu
,
Q.
,
2012
, “
Stability Analysis Via the Concept of Lyapunov Exponents: A Case Study in Optimal Controlled Biped Standing
,”
Int. J. Control
,
85
(
12
), pp.
1952
1966
.
12.
Pflimlin
,
J. M.
,
Soueres
,
P.
, and
Hamel
,
T.
,
2007
, “
Position Control of a Ducted Fan VTOL UAV in Crosswind
,”
Int. J. Control
,
80
(
5
), pp.
666
683
.
13.
Islam
,
S.
,
Liu
,
P. X.
, and
Saddik
,
A.
,
2014
, “
Nonlinear Adaptive Control for Quadrotor Flying Vehicle
,”
Nonlinear Dyn.
,
78
(
1
), pp.
117
133
.
14.
Liu
,
Y. P.
,
Chen
,
C.
,
Wu
,
H. T.
,
Zhang
,
Y. H.
, and
Mei
,
P.
,
2016
, “
Structural Stability Analysis and Optimization of the Quadrotor Unmanned Aerial Vehicles Via the Concept of Lyapunov Exponents
,”
Int. J. Adv. Manuf. Technol.
,
86
(4), pp.
1
11
.
15.
Liu
,
Y. P.
,
Li
,
X. Y.
,
Wang
,
T. M.
,
Zhang
,
Y. H.
, and
Mei
,
P.
,
2017
, “
Quantitative Stability of Quadrotor Unmanned Aerial Vehicles
,”
Nonlinear Dyn.
,
87
(
3
), pp.
1819
1833
.
16.
Dingwell
,
J. B.
, and
Marin
,
L. C.
,
2006
, “
Kinematic Variability and Local Dynamic Stability of Upper Body Motions When Walking at Different Speeds
,”
J. Biomech.
,
39
(
3
), pp.
444
452
.
17.
Yang
,
C. X.
, and
Wu
,
Q.
,
2006
, “
On Stabilization of Bipedal Robots During Disturbed Standing Using the Concept of Lyapunov Exponents
,”
Robotica
,
24
(
5
), pp.
621
624
.
18.
Yang
,
C. X.
, and
Wu
,
Q.
,
2010
, “
On Stability Analysis Via Lyapunov Exponents Calculated From a Time Series Using Nonlinear Mapping—A Case Study
,”
Nonlinear Dyn.
,
59
, pp.
239
257
.
19.
Yang
,
C. X.
, and
Wu
,
Q.
,
2011
, “
A Robust Method on Estimation of Lyapunov Exponents From a Noisy Time Series
,”
Nonlinear Dyn.
,
64
(
3
), pp.
279
292
.
20.
Ershkov
,
S. V.
,
2014
, “
New Exact Solution of Euler's Equations (Rigid Body Dynamics) in the Case of Rotation Over the Fixed Point
,”
Arch. Appl. Mech.
,
84
(
3
), pp.
385
389
.
21.
Kuznetsov
,
N. V.
,
Alexeeva
,
T. A.
, and
Leonov
,
G. A.
,
2016
, “
Invariance of Lyapunov Exponents and Lyapunov Dimension for Regular and Irregular Linearizations
,”
Nonlinear Dyn.
,
85
(
1
), pp.
195
201
.
22.
Levin
,
G.
,
Przytycki
,
F.
, and
Shen
,
W. X.
,
2016
, “
The Lyapunov Exponent of Holomorphic Maps
,”
Invent. Math.
,
205
(
2
), pp.
363
382
.
23.
Czolczynskia
,
K.
,
Okolewskib
,
A.
, and
Okolewska
,
B. B.
,
2017
, “
Lyapunov Exponents in Discrete Modelling of a Cantilever Beam Impacting on a Moving Base
,”
Int. J. Nonlinear Mech.
,
88
, pp.
74
84
.
You do not currently have access to this content.