This paper investigates a novel adaptive fuzzy fractional-order nonsingular terminal sliding mode controller (AFFO-NTSMC) for second-order nonlinear dynamic systems. The technique of fractional calculus and nonsingular terminal sliding mode control (NTSMC) are combined to establish fractional-order NTSMC (FO-NTSMC), in which a new fractional-order (FO) nonsingular terminal sliding mode (NTSM) surface is proposed. Then, a corresponding controller is designed to provide robustness, high performance control, finite time convergence in the presence of uncertainties and external disturbances. Furthermore, a fuzzy system with online adaptive learning algorithm is derived to eliminate the chattering phenomenon in conventional sliding mode control (SMC). The stability of the closed-loop system is rigorously proven. Numerical simulation results are presented to demonstrate the effectiveness of the proposed control method.

References

References
1.
Arimoto
,
S.
,
1984
, “
Stability and Robustness of PID Feedback Control for Robot Manipulators of Sensory Capability
,”
First International Symposium on Robotics Research,
Bretton Woods, NH, Aug. 25–Sept. 2, pp.
783
799
.
2.
Abdallah
,
C.
,
Dawson
,
D. M.
,
Dorato
,
P.
, and
Jamshidi
,
M.
,
1991
, “
Survey of Robust Control for Rigid Robots
,”
IEEE Control Syst.
,
11
(
2
), pp.
24
30
.
3.
Spong
,
M. W.
,
1992
, “
On the Robust Control of Robot Manipulators
,”
IEEE Trans. Automatic Control
,
37
(
11
), pp.
1782
1786
.
4.
Ortega
,
R.
, and
Spong
,
M. W.
,
1988
, “
Adaptive Motion Control of Rigid Robots: A Tutorial
,”
27th IEEE Conference on Decision and Control
(
CDC
), Austin, TX, Dec. 7–9, pp.
1575
1584
.
5.
Slotine
,
J.-J. E.
, and
Li
,
W.
,
1987
, “
On the Adaptive Control of Robot Manipulators
,”
Int. J. Rob. Res.
,
6
(
3
), pp.
49
59
.
6.
Chen
,
M.
,
Wu
,
Q.-X.
, and
Cui
,
R.-X.
,
2013
, “
Terminal Sliding Mode Tracking Control for a Class of Siso Uncertain Nonlinear Systems
,”
ISA Trans.
,
52
(
2
), pp.
198
206
.
7.
Feng
,
Y.
,
Yu
,
X.
, and
Man
,
Z.
,
2002
, “
Non-Singular Terminal Sliding Mode Control of Rigid Manipulators
,”
Automatica
,
38
(
12
), pp.
2159
2167
.
8.
Tran
,
M.-D.
, and
Kang
,
H.-J.
,
2016
, “
A Novel Adaptive Finite-Time Tracking Control for Robotic Manipulators Using Nonsingular Terminal Sliding Mode and RBF Neural Networks
,”
Int. J. Precis. Eng. Manuf.
,
17
(
7
), pp.
863
870
.
9.
Jin
,
M.
,
Lee
,
J.
,
Chang
,
P. H.
, and
Choi
,
C.
,
2009
, “
Practical Nonsingular Terminal Sliding-Mode Control of Robot Manipulators for High-Accuracy Tracking Control
,”
IEEE Trans. Ind. Electron.
,
56
(
9
), pp.
3593
3601
.
10.
Wu
,
Y.
,
Yu
,
X.
, and
Man
,
Z.
,
1998
, “
Terminal Sliding Mode Control Design for Uncertain Dynamic Systems
,”
Syst. Control Lett.
,
34
(
5
), pp.
281
287
.
11.
Yu
,
X.
, and
Zhihong
,
M.
,
2002
, “
Fast Terminal Sliding-Mode Control Design for Nonlinear Dynamical Systems
,”
IEEE Trans. Circuits Syst. I: Fundamental Theory Appl.
,
49
(
2
), pp.
261
264
.
12.
Yu
,
S.
,
Yu
,
X.
,
Shirinzadeh
,
B.
, and
Man
,
Z.
,
2005
, “
Continuous Finite-Time Control for Robotic Manipulators With Terminal Sliding Mode
,”
Automatica
,
41
(
11
), pp.
1957
1964
.
13.
Davila
,
J.
,
Fridman
,
L.
, and
Levant
,
A.
,
2005
, “
Second-Order Sliding-Mode Observer for Mechanical Systems
,”
IEEE Trans. Autom. Control
,
50
(
11
), pp.
1785
1789
.
14.
Rivera
,
J.
,
Garcia
,
L.
,
Mora
,
C.
,
Raygoza, J. J.
, and
Ortega, S.
,
2011
, “
Super-Twisting Sliding Mode in Motion Control Systems
,”
Sliding Mode Control
, A. Bartoszewicz, ed.,
InTech
,
Rijeka, Croatia
.
15.
Utkin
,
V.
,
1977
, “
Variable Structure Systems With Sliding Modes
,”
IEEE Trans. Autom. Control
,
22
(
2
), pp.
212
222
.
16.
Zhihong
,
M.
, and
Yu
,
X. H.
,
1997
, “
Terminal Sliding Mode Control of MIMO Linear Systems
,”
IEEE Trans. Circuits Syst. I: Fundamental Theory Appl.
,
44
(
11
), pp.
1065
1070
.
17.
Jiang
,
Y.
,
Wang
,
Q.
, and
Dong
,
C.
,
2013
, “
A Reaching Law Based Neural Network Terminal Sliding-Mode Guidance Law Design
,”
TENCON 2013-2013 IEEE Region 10 Conference (31194)
, Xi'an, China, Oct. 22–25, pp.
1
5
.
18.
Sun
,
T.
,
Pei
,
H.
,
Pan
,
Y.
,
Zhou
,
H.
, and
Zhang
,
C.
,
2011
, “
Neural Network-Based Sliding Mode Adaptive Control for Robot Manipulators
,”
Neurocomputing
,
74
(
14
), pp.
2377
2384
.
19.
Li
,
H.
,
Wang
,
J.
,
Wu
,
L.
,
Lam
,
H.-K.
, and
Gao
,
Y.
,
2017
, “
Optimal Guaranteed Cost Sliding Mode Control of Interval Type-2 Fuzzy Time-Delay Systems
,”
IEEE Trans. Fuzzy Syst.
,
PP
(99), p. 1.
20.
Li
,
H.
,
Sun
,
X.
,
Wu
,
L.
, and
Lam
,
H.-K.
,
2015
, “
State and Output Feedback Control of Interval Type-2 Fuzzy Systems With Mismatched Membership Functions
,”
IEEE Trans. Fuzzy Syst.
,
23
(
6
), pp.
1943
1957
.
21.
Roopaei
,
M.
, and
Jahromi
,
M. Z.
,
2009
, “
Chattering-Free Fuzzy Sliding Mode Control in MIMO Uncertain Systems
,”
Nonlinear Anal.: Theory, Methods Appl.
,
71
(
10
), pp.
4430
4437
.
22.
Nguyen
,
S. D.
, and
Nguyen
,
Q. H.
,
2017
, “
Design of Active Suspension Controller for Train Cars Based on Sliding Mode Control, Uncertainty Observer and Neuro-Fuzzy System
,”
J. Vib. Control
,
23
(
8
), pp.
1334
1353
.
23.
Nguyen
,
S. D.
,
Vo
,
H. D.
, and
Seo
,
T.-I.
,
2017
, “
Nonlinear Adaptive Control Based on Fuzzy Sliding Mode Technique and Fuzzy-Based Compensator
,”
ISA Trans.
,
70
, pp.
309
321
.
24.
Zhang
,
B.
,
Pi
,
Y.
, and
Luo
,
Y.
,
2012
, “
Fractional Order Sliding-Mode Control Based on Parameters Auto-Tuning for Velocity Control of Permanent Magnet Synchronous Motor
,”
ISA Trans.
,
51
(
5
), pp.
649
656
.
25.
Zhong
,
J.
, and
Li
,
L.
,
2015
, “
Tuning Fractional-Order Pid Controllers for a Solid-Core Magnetic Bearing System
,”
IEEE Trans. Control Syst. Technol.
,
23
(
4
), pp.
1648
1656
.
26.
Padula
,
F.
, and
Visioli
,
A.
,
2012
, “
Optimal Tuning Rules for Proportional-Integral-Derivative and Fractional-Order Proportional-Integral-Derivative Controllers for Integral and Unstable Processes
,”
IET Control Theory Appl.
,
6
(
6
), pp.
776
786
.
27.
Ladaci
,
S.
, and
Charef
,
A.
,
2006
, “
On Fractional Adaptive Control
,”
Nonlinear Dyn.
,
43
(
4
), pp.
365
378
.
28.
Cao
,
D.
, and
Fei
,
J.
,
2016
, “
Adaptive Fractional Fuzzy Sliding Mode Control for Three-Phase Active Power Filter
,”
IEEE Access
,
4
, pp.
6645
6651
.
29.
Dadras
,
S.
, and
Momeni
,
H. R.
,
2012
, “
Fractional Terminal Sliding Mode Control Design for a Class of Dynamical Systems With Uncertainty
,”
Commun. Nonlinear Sci. Numer. Simul.
,
17
(
1
), pp.
367
377
.
30.
Delavari
,
H.
,
Ghaderi
,
R.
,
Ranjbar
,
A.
, and
Momani
,
S.
,
2010
, “
Fuzzy Fractional Order Sliding Mode Controller for Nonlinear Systems
,”
Commun. Nonlinear Sci. Numer. Simul.
,
15
(
4
), pp.
963
978
.
31.
Nojavanzadeh
,
D.
, and
Badamchizadeh
,
M.
,
2016
, “
Adaptive Fractional-Order Non-Singular Fast Terminal Sliding Mode Control for Robot Manipulators
,”
IET Control Theory Appl.
,
10
(
13
), pp.
1565
1572
.
32.
Wang
,
Y.
,
Luo
,
G.
,
Gu
,
L.
, and
Li
,
X.
,
2016
, “
Fractional-Order Nonsingular Terminal Sliding Mode Control of Hydraulic Manipulators Using Time Delay Estimation
,”
J. Vib. Control
,
22
(
19
), pp.
3998
4011
.
33.
Podlubny
,
I.
,
1999
,
Fractional Differential Equations
,
Academic Press
,
San Diego, CA
.
34.
Kilbas
,
A. A.
,
Srivastava
,
H. M.
, and
Trujillo
,
J. J.
,
2006
,
Theory and Applications of Fractional Differential Equations
, Vol.
204
, Elsevier, Amsterdam, The Netherlands.
35.
Li
,
Y.
,
Chen
,
Y.
, and
Podlubny
,
I.
,
2009
, “
Mittag–Leffler Stability of Fractional Order Nonlinear Dynamic Systems
,”
Automatica
,
45
(
8
), pp.
1965
1969
.
36.
Feng
,
Y.
,
Yu
,
X.
, and
Han
,
F.
,
2013
, “
On Nonsingular Terminal Sliding-Mode Control of Nonlinear Systems
,”
Automatica
,
49
(
6
), pp.
1715
1722
.
You do not currently have access to this content.