This study is interested in the stability and stabilization of a class of fractional-order nonlinear systems with Caputo derivatives. Based on the properties of the Laplace transform, Mittag-Leffler function, Jordan decomposition, and Grönwall's inequality, some sufficient conditions that ensure local stability and stabilization of a class of fractional-order nonlinear systems under the Caputo derivative with 1<α<2 are presented. Finally, typical instances, including the fractional-order three-dimensional (3D) nonlinear system and the fractional-order four-dimensional (4D) nonlinear hyperchaos, are implemented to demonstrate the feasibility and validity of the proposed method.

References

1.
Podlubny
,
I.
,
1999
,
Fractional Differential Equations
,
Academic Press
,
New York
.
2.
Bettayeb
,
M.
, and
Djennoune
,
S.
,
2016
, “
Design of Sliding Mode Controllers for Nonlinear Fractional-Order Systems Via Diffusive Representation
,”
Nonlinear Dyn.
,
84
(
2
), pp.
593
605
.
3.
Li
,
C.
,
Wang
,
J. C.
,
Lu
,
J. G.
, and
Ge
,
Y.
,
2014
, “
Observer-Based Stabilisation of a Class of Fractional Order Non-Linear Systems for 0 < α < 2 Case
,”
IET Control Theory Appl.
,
8
(
13
), pp.
1238
1246
.
4.
Qian
,
D. L.
,
Li
,
C. P.
,
Agarwal
,
R. P.
, and
Wong
,
P. J. Y.
,
2010
, “
Stability Analysis of Fractional Differential System With Riemann-Liouville Derivative
,”
Math. Comput. Model.
,
52
(
5–6
), pp.
862
874
.
5.
Balasubramaniam
,
P.
, and
Tamilalagan
,
P.
,
2015
, “
Approximate Controllability of a Class of Fractional Neutral Stochastic Integro-Differential Inclusions With Infinite Delay by Using Mainardi's Function
,”
Appl. Math. Comput.
,
256
, pp.
232
246
.
6.
Senol
,
B.
,
Ates
,
A.
,
Alagoz
,
B. B.
, and
Yeroglu
,
C.
,
2014
, “
A Numerical Investigation for Robust Stability of Fractional-Order Uncertain Systems
,”
ISA Trans.
,
53
(
2
), pp.
189
198
.
7.
Baleanu
,
D.
,
Magin
,
R. L.
,
Bhalekar
,
S.
, and
Daftardar-Gejji
,
V.
,
2015
, “
Chaos in the Fractional Order Nonlinear Bloch Equation With Delay
,”
Commun. Nonlinear Sci. Numer. Simul.
,
25
(
1–3
), pp.
41
49
.
8.
Ebrahimkhani
,
S.
,
2016
, “
Robust Fractional Order Sliding Mode Control of Doubly-Fed Induction Generator (DFIG)-Based Wind Turbines
,”
ISA Trans.
,
63
, pp.
343
354
.
9.
Gao
,
Z.
,
2014
, “
A Computing Method on Stability Intervals of Time-Delay for Fractional-Order Retarded Systems With Commensurate Time-Delays
,”
Automatica
,
50
(
6
), pp.
1611
1616
.
10.
Xu
,
B. B.
,
Chen
,
D. Y.
,
Zhang
,
H.
, and
Wang
,
F. F.
,
2015
, “
Modeling and Stability Analysis of a Fractional-Order Francis Hydro-Turbine Governing System
,”
Chaos, Solitons Fractals
,
75
, pp.
50
61
.
11.
Xu
,
B. B.
,
Chen
,
D. Y.
,
Zhang
,
H.
, and
Zhou
,
R.
,
2015
, “
Dynamic Analysis and Modeling of a Novel Fractional-Order Hydro-Turbine-Generator Unit
,”
Nonlinear Dyn.
,
81
(
3
), pp.
1263
1274
.
12.
Xin
,
B. G.
, and
Zhang
,
J. Y.
,
2015
, “
Finite-Time Stabilizing a Fractional-Order Chaotic Financial System With Market Confidence
,”
Nonlinear Dyn.
,
79
(
2
), pp.
1399
1409
.
13.
Xu
,
Y.
,
Li
,
Y. G.
, and
Liu
,
D.
,
2014
, “
Response of Fractional Oscillators With Viscoelastic Term Under Random Excitation
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(
3
), p.
031015
.
14.
Sun
,
H. H.
,
Abdelwahad
,
A. A.
, and
Onaral
,
B.
,
1984
, “
Linear Approximation of Transfer Function With a Pole of Fractional Order
,”
IEEE Trans. Autom. Control
,
29
(
5
), pp.
441
444
.
15.
Flores-Tlacuahuac
,
A.
, and
Biegler
,
L. T.
,
2014
, “
Optimization of Fractional Order Dynamic Chemical Processing Systems
,”
Ind. Eng. Chem. Res.
,
53
(
13
), pp.
5110
5127
.
16.
Baleanu
,
D.
,
Golmankhaneh
,
A. K.
,
Golmankhaneh
,
A. K.
, and
Baleanu
,
M. C.
,
2009
, “
Fractional Electromagnetic Equations Using Fractional Forms
,”
Int. J. Theor. Phys.
,
48
(
11
), pp.
3114
3123
.
17.
Ghasemi
,
S.
,
Tabesh
,
A.
, and
Askari-Marnani
,
J.
,
2014
, “
Application of Fractional Calculus Theory to Robust Controller Design for Wind Turbine Generators
,”
IEEE Trans. Energy Convers.
,
29
(
3
), pp.
780
787
.
18.
Kusnezov
,
D.
,
Bulgac
,
A.
, and
Dang
,
G. D.
,
1999
, “
Quantum Levy Processes and Fractional Kinetics
,”
Phys. Rev. Lett.
,
82
(
6
), pp.
1136
1139
.
19.
Sabatier
,
J.
,
Moze
,
M.
, and
Farges
,
C.
,
2212
, “
LMI Stability Conditions for Fractional Order Systems
,”
Comput. Math. Appl.
,
59
(
5
), pp.
1594
1609
.
20.
Ahn
,
H. S.
,
Chen
,
Y. Q.
, and
Podlubny
,
I.
,
2007
, “
Robust Stability Test of a Class of Linear Time-Invariant Interval Fractional-Order System Using Lyapunov Inequality
,”
Appl. Math. Comput.
,
187
(
1
), pp.
27
34
.
21.
Gao
,
Z.
,
2015
, “
Robust Stabilization Criterion of Fractional-Order Controllers for Interval Fractional-Order Plants
,”
Automatica
,
61
, pp.
9
17
.
22.
Lu
,
J. G.
, and
Chen
,
G. R.
,
2009
, “
Robust Stability and Stabilization of Fractional-Order Interval Systems: An LMI Approach
,”
IEEE Trans. Autom. Control
,
54
(
6
), pp.
1294
1299
.
23.
Li
,
C.
, and
Wang
,
J. C.
,
2012
, “
Robust Stability and Stabilization of Fractional Order Interval Systems With Coupling Relationships: The 0 < α < 1 Case
,”
J. Franklin Inst.
,
349
(
7
), pp.
2406
2419
.
24.
Chen
,
G. R.
, and
Yang
,
Y.
,
2015
, “
Robust Finite-Time Stability of Fractional Order Linear Time-Varying Impulsive Systems
,”
Circuits Syst. Signal Process.
,
34
(
4
), pp.
1325
1341
.
25.
Chen
,
D. Y.
,
Zhang
,
R. F.
,
Liu
,
X. Z.
, and
Ma
,
X. Y.
,
2014
, “
Fractional Order Lyapunov Stability Theorem and Its Applications in Synchronization of Complex Dynamical Networks
,”
Commun. Nonlinear Sci. Numer. Simul.
,
19
(
12
), pp.
4105
4121
.
26.
Xu
,
B.
,
Chen
,
D.
,
Zhang
,
H.
, and
Wang
,
F.
,
2015
, “
The Modeling of the Fractional-Order Shafting System for a Water Jet Mixed-Flow Pump During the Startup Process
,”
Commun. Nonlinear Sci. Numer. Simul.
,
29
(
1–3
), pp.
12
24
.
27.
Aguila-Camacho
,
N.
,
Duarte-Mermoud
,
M. A.
, and
Gallegos
,
J. A.
,
2014
, “
Lyapunov Functions for Fractional Order Systems
,”
Commun. Nonlinear Sci. Numer. Simul.
,
19
(
9
), pp.
2951
2957
.
28.
Li
,
Y.
,
Chen
,
Y. Q.
, and
Podlubny
,
I.
,
2009
, “
Mittag-Leffler Stability of Fractional Order Nonlinear Dynamic Systems
,”
Automatica
,
45
(
8
), pp.
1965
1969
.
29.
Ding
,
D. S.
,
Qi
,
D. L.
, and
Wang
,
Q.
,
2015
, “
Non-Linear Mittag-Leffler Stabilisation of Commensurate Fractional-Order Non-Linear Systems
,”
IET Control Theory Appl.
,
9
(
5
), pp.
681
690
.
30.
Yu
,
J. M.
,
Hu
,
H.
,
Zhou
,
S. B.
, and
Lin
,
X. R.
,
2013
, “
Generalized Mittag-Leffler Stability of Multi-Variables Fractional Order Nonlinear Systems
,”
Automatica
,
49
(
6
), pp.
1798
1803
.
31.
Aghababa
,
M. P.
,
2012
, “
Robust Stabilization and Synchronization of a Class of Fractional-Order Chaotic Systems Via a Novel Fractional Sliding Mode Controller
,”
Commun. Nonlinear Sci. Numer. Simul.
,
17
(
6
), pp.
2670
2681
.
32.
Aghababa
,
M. P.
,
2016
, “
Control of Non-Integer-Order Dynamical Systems Using Sliding Mode Scheme
,”
Complexity
,
21
(
6
), pp.
224
233
.
33.
Aghababa
,
M. P.
,
2013
, “
A Novel Terminal Sliding Mode Controller for a Class of Non-Autonomous Fractional-Order Systems
,”
Nonlinear Dyn.
,
73
(
1–2
), pp.
679
688
.
34.
Wang
,
B.
,
Xue
,
J. Y.
,
Wu
,
F. J.
, and
Zhu
,
D. L.
,
2016
, “
Stabilization Conditions for Fuzzy Control of Uncertain Fractional Order Non-Linear Systems With Random Disturbances
,”
IET Control Theory Appl.
,
10
(
6
), pp.
637
647
.
35.
Chen
,
D. Y.
,
Zhao
,
W. L.
,
Sprott
,
J. C.
, and
Ma
,
X. Y.
,
2013
, “
Application of Takagi-Sugeno Fuzzy Model to a Class of Chaotic Synchronization and Anti-Synchronization
,”
Nonlinear Dyn.
,
73
(
3
), pp.
1495
1505
.
36.
Rakkiyappan
,
R.
,
Velmurugan
,
G.
, and
Cao
,
J. D.
,
2014
, “
Finite-Time Stability Analysis of Fractional-Order Complex-Valued Memristor-Based Neural Networks With Time Delays
,”
Nonlinear Dyn.
,
78
(
4
), pp.
2823
2836
.
37.
Xu
,
B. B.
,
Chen
,
D.
,
Zhang
,
H.
,
Wang
,
F.
,
Zhang
,
X.
, and
Wu
,
Y.
,
2017
, “
Hamiltonian Model and Dynamic Analyses for a Hydro-Turbine Governing System With Fractional Item and Time-Lag
,”
Commun. Nonlinear Sci. Numer. Simul.
,
47
, pp.
35
47
.
38.
Wang
,
B.
,
Ding
,
J. L.
,
Wu
,
F. J.
, and
Zhu
,
D. L.
,
2016
, “
Robust Finite-Time Control of Fractional-Order Nonlinear Systems Via Frequency Distributed Model
,”
Nonlinear Dyn.
,
85
(
4
), pp.
2133
2142
.
39.
Lan
,
Y. H.
,
Huang
,
H. X.
, and
Zhou
,
Y.
,
2012
, “
Observer-Based Robust Control of a (1 ≤ α < 2) Fractional-Order Uncertain Systems: A Linear Matrix Inequality Approach
,”
IET Control Theory Appl.
,
6
(
2
), pp.
229
234
.
40.
Zhang
,
R. X.
,
Tian
,
G.
,
Yang
,
S. P.
, and
Cao
,
H. F.
,
2015
, “
Stability Analysis of a Class of Fractional Order Nonlinear Systems With Order Lying in (0, 2)
,”
ISA Trans.
,
56
, pp.
102
110
.
41.
Yang
,
N. N.
, and
Liu
,
C. X.
,
2013
, “
A Novel Fractional-Order Hyperchaotic System Stabilization Via Fractional Sliding-Mode Control
,”
Nonlinear Dyn.
,
74
(
3
), pp.
721
732
.
You do not currently have access to this content.