In this paper, we formulate a new nonstandard finite difference (NSFD) scheme to study the dynamic treatments of a class of fractional chaotic systems. To design the new proposed scheme, an appropriate nonlocal framework is applied for the discretization of nonlinear terms. This method is easy to implement and preserves some important physical properties of the considered model, e.g., fixed points and their stability. Additionally, this scheme is explicit and inexpensive to solve fractional differential equations (FDEs). From a practical point of view, the stability analysis and chaotic behavior of three novel fractional systems are provided by the proposed approach. Numerical simulations and comparative results confirm that this scheme is also successful for the fractional chaotic systems with delay arguments.

References

References
1.
Li
,
C.
, and
Peng
,
G.
,
2004
, “
Chaos in Chen's System With a Fractional Order
,”
Chaos, Solitons Fractals
,
22
(
2
), pp.
443
450
.
2.
Jajarmi
,
A.
,
Hajipour
,
M.
, and
Baleanu
,
D.
,
2017
, “
New Aspects of the Adaptive Synchronization and Hyperchaos Suppression of a Financial Model
,”
Chaos, Solitons Fractals
,
99
, pp.
285
296
.
3.
Baleanu
,
D.
,
Wu
,
G.
, and
Zeng
,
S.
,
2017
, “
Chaos Analysis and Asymptotic Stability of Generalized Caputo Fractional Differential Equations
,”
Chaos, Solitons Fractals
,
102
, pp.
99
105
.
4.
El-Sayed
,
A.
,
Nour
,
H. M.
,
Elsaid
,
A.
,
Matouk
,
A.
, and
Elsonbaty
,
A.
,
2016
, “
Dynamical Behaviors, Circuit Realization, Chaos Control, and Synchronization of a New Fractional Order Hyperchaotic System
,”
Appl. Math. Model.
,
40
(
5–6
), pp.
3516
3534
.
5.
Chen
,
B.
, and
Solis
,
F.
,
1998
, “
Discretizations of Nonlinear Differential Equations Using Explicit Finite Order Methods
,”
J. Comput. Appl. Math.
,
90
(
2
), pp.
171
183
.
6.
Scherer
,
R.
,
Kalla
,
S.
,
Tang
,
Y.
, and
Huang
,
J.
,
2011
, “
The Grünwald-Letnikov Method for Fractional Differential Equations
,”
Comput. Math. Appl.
,
62
(
3
), pp.
902
917
.
7.
Baleanu
,
D.
,
Petras
,
I.
,
Asad
,
J. H.
, and
Velasco
,
M.
,
2012
, “
Fractional Pais-Uhlenbeck Oscillator
,”
Int. J. Theor. Phys.
,
51
(
4
), pp.
1253
1258
.
8.
Baleanu
,
D.
,
Asad
,
J.
, and
Petras
,
I.
,
2012
, “
Fractional-Order Two Electric Pendulum
,”
Rom. Rep. Phys.
,
64
(1), pp.
907
914
.
9.
Baleanu
,
D.
,
Asad
,
J.
,
Petras
,
I.
,
Elagan
,
S.
, and
Bilgen
,
A.
,
2012
, “
Fractional Euler-Lagrange Equation of Caldirola-Kanai Oscillator
,”
Rom. Rep. Phys.
,
64
, pp.
1171
1177
.http://www.rrp.infim.ro/2012_supliment/art04BALEANU.pdf
10.
Baleanu
,
D.
,
Asad
,
J.
, and
Petras
,
I.
,
2014
, “
Fractional Bateman-Feshbach Tikochinsky Oscillator
,”
Commun. Theor. Phys.
,
61
(
2
), pp.
221
225
.
11.
Podlubny
,
I.
,
2010
, “
Matrix Approach to Discrete Fractional Calculus
,”
Fract. Calc. Appl. Anal.
,
3
, pp.
359
386
.https://arxiv.org/pdf/0811.1355.pdf
12.
Podlubny
,
I.
,
Chechkin
,
A.
,
Skovranek
,
T.
,
Chen
,
Y.
, and
Vinagre
,
B.
,
2009
, “
Matrix Approach to Discrete Fractional Calculus II: Partial Fractional Differential Equations
,”
J. Comput. Phys.
,
228
(
8
), pp.
3137
3153
.
13.
Dabiri
,
A.
, and
Butcher
,
E.
,
2017
, “
Efficient Modified Chebyshev Differentiation Matrices for Fractional Differential Equations
,”
Commun. Nonlinear Sci. Numer. Simul.
,
50
, pp.
284
310
.
14.
Dabiri
,
A.
,
Nazari
,
M.
, and
Butcher
,
E.
,
2016
, “
Chaos Analysis and Control in Fractional Order Systems Using Fractional Chebyshev Collocation Method
,”
ASME
Paper No. IMECE2016-67909.
15.
Dabiri
,
A.
,
Butcher
,
E.
, and
Nazari
,
M.
,
2017
, “
Coefficient of Restitution in Fractional Viscoelastic Compliant Impacts Using Fractional Chebyshev Collocation
,”
J. Sound Vib.
,
388
, pp.
230
244
.
16.
Momani
,
S.
,
Odibat
,
Z.
, and
Alawneh
,
A.
,
2008
, “
Variational Iteration Method for Solving the Space- and Time-Fractional KdV Equation
,”
Numer. Methods Partial Differ. Equations J.
,
24
(
1
), pp.
262
271
.
17.
Diethelm
,
K.
,
1997
, “
An Algorithm for the Numerical Solution of Differential Equations of Fractional Order
,”
Electron. Trans. Numer. Anal.
,
5
, pp.
1
6
.https://www.researchgate.net/publication/2264218_An_Algorithm_For_The_Numerical_Solution_Of_Differential_Equations_Of_Fractional_Order
18.
Diethelm
,
K.
,
Ford
,
N.
, and
Freed
,
A.
,
2002
, “
A Predictor-Corrector Approach for the Numerical Solution of Fractional Differential Equations
,”
Nonlinear Dyn.
,
29
(
1–4
), pp.
3
22
.
19.
Diethelm
,
K.
,
2003
, “
Efficient Solution of Multi-Term Fractional Differential Equations Using P(EC)mE Methods
,”
Comput.
,
71
(
4
), pp.
305
319
.
20.
Baleanu
,
D.
,
Magin
,
R.
,
Bhalekar
,
S.
, and
Daftardar-Gejji
,
V.
,
2015
, “
Chaos in the Fractional Order Nonlinear Bloch Equation With Delay
,”
Commun. Nonlinear Sci. Numer. Simul.
,
25
(
1–3
), pp.
41
49
.
21.
Parsa-Moghaddam
,
B.
,
Yaghoobi
,
S.
, and
Tenreiro Machado
,
J.
,
2016
, “
An Extended Predictor-Corrector Algorithm for Variable-Order Fractional Delay Differential Equations
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
6
), p.
61001
.
22.
Arenas
,
A.
,
Gonzalez-Parra
,
G.
, and
Chen-Charpentier
,
B.
,
2016
, “
Construction of Nonstandard Finite Difference Schemes for the SI and SIR Epidemic Models of Fractional Order
,”
Math. Comput. Simul.
,
121
, pp.
48
63
.
23.
Nagy
,
A.
, and
Sweilam
,
N.
,
2014
, “
An Efficient Method for Solving Fractional Hodgkin-Huxley Model
,”
Phys Lett A
,
378
(
30–31
), pp.
1980
1984
.
24.
Mickens
,
R.
,
1994
,
Nonstandard Finite Difference Models of Differential Equations
,
World Scientific
,
Singapore
.
25.
Mickens
,
R.
,
2000
,
Applications of Nonstandard Finite Difference Schemes
,
World Scientific
,
River Edge, NJ
.
26.
Podlubny
,
I.
,
1999
,
Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications
,
Academic Press
,
San Diego, CA
.
27.
Meerschaert
,
M.
, and
Tadjeran
,
C.
,
2004
, “
Finite Difference Approximations for Fractional Advection Dispersion Flow Equations
,”
J. Comput. Appl. Math.
,
172
(
1
), pp.
65
77
.
28.
Deng
,
W.
,
Li
,
C.
, and
Lu
,
J.
,
2007
, “
Stability Analysis of Linear Fractional Differential System With Multiple Time Delays
,”
Nonlinear Dyn.
,
48
(
4
), pp.
409
416
.
29.
Tavazoei
,
M.
, and
Haeri
,
M.
,
2007
, “
A Necessary Condition for Double Scroll Attractor Existence in Fractional Order Systems
,”
Phys. Lett. A
,
367
(
1–2
), pp.
102
113
.
30.
Tavazoei
,
M.
, and
Haeri
,
M.
,
2008
, “
Chaotic Attractors in Incommensurate Fractional Order Systems
,”
Phys. D
,
237
(
20
), pp.
2628
2637
.
31.
Huang
,
S.
,
Zhang
,
R.
, and
Chen
,
D.
,
2015
, “
Stability of Nonlinear Fractional-Order Time Varying Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
3
), p.
031007
.
32.
Wolf
,
A.
,
Swift
,
J. B.
,
Swinney
,
H. L.
, and
John
,
A. W.
,
1985
, “
Determining Lyapunov Exponents From a Time Series
,”
Phys. D.
,
16
(
3
), pp.
285
317
.
33.
Bhalekar
,
S.
,
2013
, “
A Necessary Condition for the Existence of Chaos in Fractional Order Delay Differential Equations
,”
Int. J. Math. Sci.
,
7
(3), pp. 28–32.http://waset.org/publications/16807/a-necessary-condition-for-the-existence-of-chaos-in-fractional-order-delay-differential-equations
34.
Garrappa
,
R.
,
2011
, “
Predictor-Corrector PECE Method for Fractional Differential Equations
,” The MathWorks, Inc., Natick, MA.
35.
Shu
,
C.-W.
, and
Osher
,
S.
,
1988
, “
Efficient Implementation of Essentially Non-Oscillatory Shock-Capturing Schemes
,”
J. Comput. Phys.
, 7(
2
), pp.
439
471
.
You do not currently have access to this content.