This paper is mainly concerned with asymptotic stability for a class of fractional-order (FO) nonlinear system with application to stabilization of a fractional permanent magnet synchronous motor (PMSM). First of all, we discuss the stability problem of a class of fractional time-varying systems with nonlinear dynamics. By employing Gronwall–Bellman's inequality, Laplace transform and its inverse transform, and estimate forms of Mittag–Leffler (ML) functions, when the FO belongs to the interval (0, 2), several stability criterions for fractional time-varying system described by Riemann–Liouville's definition is presented. Then, it is generalized to stabilize a FO nonlinear PMSM system. Furthermore, it should be emphasized here that the asymptotic stability and stabilization of Riemann–Liouville type FO linear time invariant system with nonlinear dynamics is proposed for the first time. Besides, some problems about the stability of fractional time-varying systems in existing literatures are pointed out. Finally, numerical simulations are given to show the validness and feasibleness of our obtained stability criterions.

References

References
1.
Podlubny
,
I.
,
1998
,
Fractional Differential Equations
,
Academic Press
,
San Diego, CA
.
2.
Butzer
,
P.
, and
Westphal
,
U.
,
2000
,
An Introduction to Fractional Calculus
,
World Scientific
,
Singapore
.
3.
Hilfer
,
R.
,
2001
,
Applications of Fractional Calculus in Physics
,
World Scientific
,
Hackensack, NJ
.
4.
Kilbas
,
A.
,
Srivastava
,
H.
, and
Trujillo
,
J.
,
2006
,
Theory and Application of Fractional Differential Equations
,
Elsevier
,
Amsterdam, The Netherlands
.
5.
Lakshmikantham
,
V.
,
Leela
,
S.
, and
Vasundhara Devi
,
J.
,
2009
,
Theory of Fractional Dynamic Systems
,
Cambridge Scientific Publishers Ltd.
,
Cambridge, UK
.
6.
Machado
,
J. T.
,
2009
, “
Fractional Derivatives: Probability Interpretation and Frequency Response of Rational Approximations
,”
Commun. Nonlinear Sci. Numer. Simul.
,
14
(9–10), pp.
3492
3497
.
7.
Monje
,
C.
,
Chen
,
Y.
,
Vinagre
,
B.
,
Xue
,
D.
, and
Feliu
,
V.
,
2010
,
Fractional-Order Systems and Controls
,
Springer
,
New York
.
8.
Valério
,
D.
,
Machado
,
J.
, and
Kiryakova
,
V.
,
2014
, “
Some Pioneers of the Applications of Fractional Calculus
,”
Fract. Calc. Appl. Anal.
,
17
(2), pp.
552
578
.
9.
Zhou
,
Y.
,
2014
,
Basic Theory of Fractional Differential Equations
,
World Scientific
,
Hackensack, NJ
.
10.
Hadid
,
S. B.
, and
Alshamani
,
J. G.
,
1986
, “
Liapunov Stability of Differential Equations of Noninteger Order
,”
Arab J. Math.
,
7
(
1–2
), pp.
5
17
.http://www.ams.org/mathscinet-getitem?mr=946958
11.
Matignon
,
D.
,
1996
, “
Stability Results for Fractional Differential Equations With Applications to Control Processing
,” Multiconference on Computational Engineering in Systems and Application (
IMACS
), Lille, France, July 9–12, pp.
963
968
.https://pdfs.semanticscholar.org/779d/84a8593dfba2bb6d8837057a2594b91cb87a.pdf
12.
Momani
,
S.
, and
Hadid
,
S.
,
2004
, “
Lyapunov Stability Solutions of Fractional Integrodifferential Equations
,”
Int. J. Math. Math. Sci.
,
47
, pp.
2503
2507
.
13.
Deng
,
W. H.
,
Li
,
C. P.
, and
Lu
,
J. H.
,
2007
, “
Stability Analysis of Linear Fractional Differential System With Multiple Time Delays
,”
Nonlinear Dyn.
,
48
(
4
), pp.
409
416
.
14.
Ahn
,
H. S.
, and
Chen
,
Y. Q.
,
2008
, “
Necessary and Sufficient Stability Condition of Fractional-Order Interval Linear Systems
,”
Automatica
,
44
(
11
), pp.
2985
2988
.
15.
Tavazoe
,
M. S.
, and
Haeri
,
M.
,
2009
, “
A Note on the Stability of Fractional Order Systems
,”
Math. Comput. Simul.
,
79
(
5
), pp.
1566
1576
.
16.
Qian
,
D.
,
Li
,
C.
,
Agarwal
,
R. P.
, and
Wong
,
P.
,
2010
, “
Stability Analysis of Fractional Differential System With Riemann-Liouville Derivative
,”
Math. Comput. Model.
,
52
(
5–6
), pp.
862
874
.
17.
Lu
,
J.
, and
Chen
,
Y.
,
2010
, “
Robust Stability and Stabilization of Fractional-Order Interval Systems With the Fractional Order α: The 0 ≪α ≪1 Case
,”
IEEE Trans. Autom. Control
,
55
(
1
), pp.
152
158
.
18.
Sabatier
,
J.
,
Moze
,
M.
, and
Farges
,
C.
,
2010
, “
LMI Stability Conditions for Fractional Order Systems
,”
Comput. Math. Appl.
,
59
(
5
), pp.
1594
1609
.
19.
Li
,
C.
, and
Zhang
,
F.
,
2011
, “
A Survey on the Stability of Fractional Differential Equations
,”
Eur. Phys. J. Spec. Top.
,
193
(
1
), pp.
27
47
.
20.
Trigeassou
,
J.
,
Maamri
,
N.
,
Sabatier
,
J.
, and
Oustaloup
,
A.
,
2011
, “
A Lyapunov Approach to the Stability of Fractional Differential Equations
,”
Signal Process.
,
91
(
3
), pp.
437
445
.
21.
Kaslik
,
E.
, and
Sivasundaram
,
S.
,
2012
, “
Analytical and Numerical Methods for the Stability Analysis of Linear Fractional Delay Differential Equations
,”
J. Comput. Appl. Math.
,
236
(
16
), pp.
4027
4041
.
22.
Zhou
,
X.
,
Hu
,
L.
,
Liu
,
S.
, and
Jiang
,
W.
,
2014
, “
Stability Criterion for a Class of Nonlinear Fractional Differential Systems
,”
Appl. Math. Lett.
,
28
(
2
), pp.
25
29
.
23.
Liu
,
S.
,
Jiang
,
W.
,
Li
,
X.
, and
Zhou
,
X.
,
2016
, “
Lyapunov Stability Analysis of Fractional Nonlinear Systems
,”
Appl. Math. Lett.
,
51
, pp.
13
19
.
24.
Wu
,
Z.
,
Zou
,
Y.
, and
Huang
,
N.
,
2016
, “
A System of Fractional-Order Interval Projection Neural Networks
,”
J. Comput. Appl. Math.
,
294
, pp.
389
402
.
25.
Li
,
Y.
,
Chen
,
Y.
, and
Pudlubny
,
I.
,
2010
, “
Stability of Fractional-Order Nonlinear Dynamic Systems: Lyapunov Direct Method and Generalized Mittag-Leffler Stability
,”
Comput. Math. Appl.
,
59
(
5
), pp.
1810
1821
.
26.
Chen
,
L.
,
Chai
,
Y.
,
Wu
,
R.
, and
Yang
,
J.
,
2012
, “
Stability and Stabilization of a Class of Nonlinear Fractional-Order Systems With Caputo Derivative
,”
IEEE Trans. Circuits Syst. II Express Briefs
,
59
(
9
), pp.
602
606
.
27.
Ge
,
F.
, and
Kou
,
C.
,
2015
, “
Stability Analysis by Krasnoselskii's Fixed Point Theorem for Nonlinear Fractional Differential Equations
,”
Appl. Math. Comput.
,
257
, pp.
308
316
.
28.
Li
,
J.
, and
Li
,
Y.
,
2013
, “
Robust Stability and Stabilization of Fractional-Order Systems Based on Uncertain Takagi-Sugeno Fuzzy Model With the Fractional Order 1 ≤ v <2
,”
ASME J. Comput. Nonlinear Dyn.
,
8
(
4
), p.
041005
.
29.
Lim
,
Y.
,
Oh
,
K.
, and
Ahn
,
H.
,
2013
, “
Stability and Stabilization of Fractional-Order Linear Systems Subject to Input Saturation
,”
IEEE Trans. Autom. Control
,
58
(
4
), pp.
1062
1067
.
30.
Zhang
,
X.
,
Liu
,
L.
,
Feng
,
G.
, and
Wang
,
Y.
,
2013
, “
Asymptotical Stabilization of Fractional-Order Linear Systems in Triangular Form
,”
Automatica
,
49
(
11
), pp.
3315
3321
.
31.
Dung
,
N.
,
2014
, “
Asymptotic Behavior of Linear Fractional Stochastic Differential Equations With Time-Varying Delays
,”
Commun. Nonlinear Sci. Numer. Simul.
,
19
(
1
), pp.
1
7
.
32.
Aguila-Camacho
,
N.
,
Duarte-Mermoud
,
M.
, and
Gallegos
,
J.
,
2014
, “
Lyapunov Functions for Fractional Order Systems
,”
Commun. Nonlinear Sci. Numer. Simul.
,
19
(
9
), pp.
2951
2957
.
33.
Duarte-Mermoud
,
M.
,
Aguila-Camacho
,
N.
,
Gallegos
,
J.
, and
Castro-Linares
,
R.
,
2015
, “
Using General Quadratic Lyapunov Functions to Prove Lyapunov Uniform Stability for Fractional Order Systems
,”
Commun. Nonlinear Sci. Numer. Simul.
,
22
(1–3), pp.
650
659
.
34.
Liu
,
S.
,
Zhou
,
X. F.
,
Li
,
X.
, and
Jiang
,
W.
,
2017
, “
Asymptotical Stability of Riemann-Liouville Fractional Singular Systems With Multiple Time-Varying Delays
,”
Appl. Math. Lett.
,
65
, pp.
32
39
.
35.
Guo
,
Y.
, and
Ma
,
B.
,
2016
, “
Extension of Lyapunov Direct Method About the Fractional Nonautonomous Systems With Order Lying in (1, 2)
,”
Nonlinear Dyn.
,
84
(
3
), pp.
1353
1361
.
36.
Lenka
,
B. K.
, and
Banerjee
,
S.
,
2016
, “
Asymptotic Stability and Stabilization of a Class of Nonautonomous Fractional Order Systems
,”
Nonlinear Dyn.
,
85
(
1
), pp.
167
177
.
37.
Wu
,
G. C.
,
Baleanu
,
D.
,
Xie
,
H. P.
, and
Chen
,
F. L.
,
2016
, “
Chaos Synchronization of Fractional Chaotic Maps Based on Stability Results
,”
Physica A
,
460
, pp.
374
383
.
38.
Baleanu
,
D.
,
Wu
,
G. C.
,
Bai
,
Y. R.
, and
Chen
,
F. L.
,
2017
, “
Stability Analysis of Caputo-Like Discrete Fractional Systems
,”
Commun. Nonlinear Sci. Numer. Simul.
,
48
, pp.
520
530
.
39.
Baleanu
,
D.
,
Wu
,
G. C.
, and
Zeng
,
S. D.
,
2017
, “
Chaos Analysis and Asymptotic Stability of Generalized Caputo Fractional Differential Equations
,”
Chaos Solitons Fractals
,
102
, pp.
99
105
.
40.
Cahill
,
D. P. M.
, and
Adkins
,
B.
,
1962
, “
The Permanent-Magnet Synchronous Motor
,”
Proc. Inst. Elec. Eng. A
,
109
(
48
), pp.
483
491
.
41.
Li
,
Z.
,
Jin
,
B. P.
,
Joo
,
Y. H.
, and
Zhang
,
B.
,
2002
, “
Bifurcations and Chaos in a Permanent-Magnet Synchronous Motor
,”
IEEE Trans. Circuits Syst. I Fundam. Theory Appl.
,
49
(
3
), pp.
383
387
.
42.
Jing
,
Z.
,
Yu
,
C.
, and
Chen
,
G.
,
2004
, “
Complex Dynamics in a Permanent-Magnet Synchronous Motor Model
,”
Chaos Solitons Fractals
,
22
(
4
), pp.
831
848
.
43.
Han
,
H. C.
,
2012
, “
Adaptive Control of a Chaotic Permanent Magnet Synchronous Motor
,”
Nonlinear Dyn.
,
69
(
3
), pp.
1311
1322
.
44.
Wang
,
J.
,
Chen
,
X.
, and
Fu
,
J.
,
2014
, “
Adaptive Finite-Time Control of Chaos in Permanent Magnet Synchronous Motor With Uncertain Parameters
,”
Nonlinear Dyn.
,
78
(
2
), pp.
1321
1328
.
45.
Yu
,
W.
,
Luo
,
Y.
,
Chen
,
Y.
, and
Pi
,
Y.
,
2015
, “
Frequency Domain Modelling and Control of Fractional-Order System for Permanent Magnet Synchronous Motor Velocity Servo System
,”
IET Control Theory A
,
10
(
2
), pp.
136
143
.
46.
Li
,
C. L.
,
Yu
,
S. M.
, and
Luo
,
X. S.
,
2012
, “
Fractional-Order Permanent Magnet Synchronous Motor and Its Adaptive Chaotic Control
,”
Chin. Phys. B
,
21
(
10
), pp.
168
173
.
47.
Liu
,
L.
,
Liang
,
D.
,
Liu
,
C.
, and
Zhang
,
Q.
,
2012
, “
Nonlinear State Observer Design for Projective Synchronization of Fractional-Order Permanent Magnet Synchronous Motor
,”
Int. J. Mod. Phys. B
,
26
(
30
), p.
50166
.
48.
Gallegos
,
J.
, and
Duarte-Mermoud
,
M.
,
2016
, “
Boundedness and Convergence on Fractional Order Systems
,”
J. Comput. Appl. Math.
,
296
, pp.
815
826
.
49.
Huang
,
S.
,
Zhang
,
R.
, and
Chen
,
D.
,
2016
, “
Stability of Nonlinear Fractional-Order Time Varying Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
3
), p.
031007
.
50.
Corduneanu
,
C.
,
1971
,
Principles of Differential and Integral Equations
,
Allynand Bacon
,
Boston, MA
.
51.
Podlubny
,
I.
,
2000
, “
Matrix Approach to Discrete Fractional Calculus
,”
Fract. Calc. Appl. Anal.
,
3
(
4
), pp.
359
386
.http://www.ams.org/mathscinet-getitem?mr=1806310
52.
Podlubny
,
I.
,
Chechkin, A.
,
Skovranek, T.
,
Chen, Y.
, and
Jara, B. M. V.
,
2008
, “
Matrix Approach to Discrete Fractional Calculus II: Partial Fractional Differential Equations
,”
J. Comput. Phys.
,
228
(8), pp. 3137–3153.
53.
Hartley
,
T.
, and
Lorenzo
,
C.
,
2008
, “
Application of Incomplete Gamma Functions to the Initialization of Fractional-Order Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
3
(
2
), p.
021103
.
54.
Trigeassou
,
J.
,
Maamri
,
N.
,
Sabatier
,
J.
, and
Oustaloup
,
A.
,
2012
, “
State Variables and Transients of Fractional Order Differential Systems
,”
Comput. Math. Appl.
,
64
(
10
), pp.
3117
3140
.
55.
Sabatier
,
J.
,
Farges
,
C.
, and
Oustaloup
,
A.
,
2014
, “
Fractional Systems State Space Description: Some Wrong Ideas and Proposed Solution
,”
J. Vib. Control
,
20
(
7
), pp.
1076
1084
.
You do not currently have access to this content.