With the growing structural complexity and growing demands on structural reliability, nonlinear parameters identification is an efficient approach to provide better understanding of dynamic behaviors of the nonlinear system and contribute significantly to improve system performance. However, the dynamic response at nonlinear location, which cannot always be measured by the sensor, is the basis for most of these identification algorithms, and the clearance nonlinearity, which always exists to degrade the dynamic performance of mechanical structures, is rarely identified in previous studies. In this paper, based on the thought of output feedback which the nonlinear force is viewed as the internal feedback force of the nonlinear system acting on the underlying linear model, a frequency-domain nonlinear response reconstruction method is proposed to reconstruct the dynamic response at the nonlinear location from the arbitrary location where the sensor can be installed. For the clearance nonlinear system, the force graph method which is based on the reconstructed displacement response and nonlinear force is presented to identify the clearance value. The feasibility of the reconstruction method and identification method is verified by simulation data from a cantilever beam model with clearance nonlinearity. A clearance test-bed, which is a continuum structure with adjustable clearance nonlinearity, is designed to verify the effectiveness of proposed methods. The experimental results show that the reconstruction method can precisely reconstruct the displacement response at the clearance location from measured responses at reference locations, and based on the reconstructed response, the force graph method can also precisely identify the clearance parameter.

References

References
1.
Sun
,
D.
,
2016
, “
Tracking Accuracy Analysis of a Planar Flexible Manipulator With Lubricated Joint and Interval Uncertainty
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
5
), p.
051024
.
2.
Zhang
,
J.
, and
Du
,
X.
,
2015
, “
Time-Dependent Reliability Analysis for Function Generation Mechanisms With Random Joint Clearances
,”
Mech. Mach. Theory
,
92
, pp.
184
199
.
3.
Wang
,
Z.
,
Tian
,
Q.
,
Hu
,
H.
, and
Flores
,
P.
,
2016
, “
Nonlinear Dynamics and Chaotic Control of a Flexible Multibody System With Uncertain Joint Clearance
,”
Nonlinear Dyn.
,
86
(
3
), pp.
1571
1597
.
4.
Li
,
P.
,
Chen
,
W.
,
Li
,
D.
,
Yu
,
R.
, and
Zhang
,
W.
,
2016
, “
Wear Analysis of Two Revolute Joints With Clearance in Multibody Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
1
), p.
011009
.
5.
Ting
,
K.-L.
,
Hsu
,
K.-L.
,
Yu
,
Z.
, and
Wang
,
J.
,
2017
, “
Clearance-Induced Output Position Uncertainty of Planar Linkages With Revolute and Prismatic Joints
,”
Mech. Mach. Theory
,
111
, pp.
66
75
.
6.
Yaqubi
,
S.
,
Dardel
,
M.
,
Daniali
,
H. M.
, and
Ghasemi
,
M. H.
,
2016
, “
Modeling and Control of Crank–Slider Mechanism With Multiple Clearance Joints
,”
Multibody Syst. Dyn.
,
36
(
2
), pp.
143
167
.
7.
Sun
,
D.
,
Chen
,
G.
,
Shi
,
Y.
,
Wang
,
T.
, and
Sun
,
R.
,
2015
, “
Model Reduction of a Flexible Multibody System With Clearance
,”
Mech. Mach. Theory
,
85
, pp.
106
115
.
8.
Vörös
,
J.
,
2002
, “
Modeling and Parameter Identification of Systems With Multisegment Piecewise-Linear Characteristics
,”
IEEE Trans. Autom. Control
,
47
(
1
), pp.
184
188
.
9.
Koyuncu
,
A.
,
Cigeroglu
,
E.
,
Yumer
,
M.
, and
Özgüven
,
H.
,
2013
, “
Localization and Identification of Structural Nonlinearities Using Neural Networks
,”
Topics in Nonlinear Dynamics
, Vol.
1
,
Springer
,
New York
, pp.
103
112
.
10.
Liu
,
J.
,
Li
,
B.
,
Jin
,
W.
,
Han
,
L.
, and
Quan
,
S.
,
2017
, “
Experiments on Clearance Identification in Cantilever Beams Reduced From Artillery Mechanism
,”
Proc. Inst. Mech. Eng., Part C
,
231
(
6
), pp.
1010
1032
.
11.
Kerschen
,
G.
,
Worden
,
K.
,
Vakakis
,
A. F.
, and
Golinval
,
J.-C.
,
2006
, “
Past, Present and Future of Nonlinear System Identification in Structural Dynamics
,”
Mech. Syst. Signal Process.
,
20
(
3
), pp.
505
592
.
12.
Noël
,
J.-P.
,
Renson
,
L.
, and
Kerschen
,
G.
,
2014
, “
Complex Dynamics of a Nonlinear Aerospace Structure: Experimental Identification and Modal Interactions
,”
J. Sound Vib.
,
333
(
12
), pp.
2588
2607
.
13.
Renson
,
L.
,
Kerschen
,
G.
, and
Cochelin
,
B.
,
2016
, “
Numerical Computation of Nonlinear Normal Modes in Mechanical Engineering
,”
J. Sound Vib.
,
364
, pp.
177
206
.
14.
Adams
,
D. E.
, and
Allemang
,
R. J.
,
1999
, “
A New Derivation of the Frequency Response Function Matrix for Vibrating Non-Linear Systems
,”
J. Sound Vib.
,
227
(
5
), pp.
1083
1108
.
15.
Adams
,
D.
, and
Allemang
,
R.
,
1999
, “
Characterization of Nonlinear Vibrating Systems Using Internal Feedback and Frequency Response Modulation
,”
ASME J. Sound Vib.
,
121
(
4
), pp.
495
500
.
16.
Marchesiello
,
S.
, and
Garibaldi
,
L.
,
2008
, “
Identification of Clearance-Type Nonlinearities
,”
Mech. Syst. Signal Process.
,
22
(
5
), pp.
1133
1145
.
17.
Noël
,
J.-P.
, and
Kerschen
,
G.
,
2013
, “
Frequency-Domain Subspace Identification for Nonlinear Mechanical Systems
,”
Mech. Syst. Signal Process.
,
40
(
2
), pp.
701
717
.
18.
Noël
,
J.-P.
,
Marchesiello
,
S.
, and
Kerschen
,
G.
,
2014
, “
Subspace-Based Identification of a Nonlinear Spacecraft in the Time and Frequency Domains
,”
Mech. Syst. Signal Process.
,
43
(
1
), pp.
217
236
.
19.
Li
,
B.
,
Han
,
L.
,
Jin
,
W.
, and
Quan
,
S.
,
2015
, “
Theoretical and Experimental Identification of Cantilever Beam With Clearances Using Statistical and Subspace-Based Methods
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
3
), p.
031003
.
20.
Vörös
,
J.
,
2007
, “
Parameter Identification of Wiener Systems With Multisegment Piecewise-Linear Nonlinearities
,”
Syst. Control Lett.
,
56
(
2
), pp.
99
105
.
21.
Özer
,
M. B.
, and
Özgüven
,
H. N.
,
2002
, “
A New Method for Localization and Identification of Non-Linearities in Structures
,”
Sixth Biennial Conference on Engineering Systems Design and Analysis (ESDA)
, Istanbul, Turkey, July 8–11, pp.
8
11
.
22.
Özer
,
M. B.
,
Özgüven
,
H. N.
, and
Royston
,
T. J.
,
2009
, “
Identification of Structural Non-Linearities Using Describing Functions and the Sherman–Morrison Method
,”
Mech. Syst. Signal Process.
,
23
(
1
), pp.
30
44
.
23.
Arslan
,
Ö.
,
Aykan
,
M.
, and
Özgüven
,
H. N.
,
2011
, “
Parametric Identification of Structural Nonlinearities From Measured Frequency Response Data
,”
Mech. Syst. Signal Process.
,
25
(
4
), pp.
1112
1125
.
24.
Aykan
,
M.
, and
Özgüven
,
H. N.
,
2013
, “
Parametric Identification of Nonlinearity in Structural Systems Using Describing Function Inversion
,”
Mech. Syst. Signal Process.
,
40
(
1
), pp.
356
376
.
25.
Adams
,
D.
, and
Allemang
,
R.
,
2000
, “
A Frequency Domain Method for Estimating the Parameters of a Non-Linear Structural Dynamic Model Through Feedback
,”
Mech. Syst. Signal Process.
,
14
(
4
), pp.
637
656
.
26.
Spottswood
,
S. M.
,
2006
, “
Identification of Nonlinear Parameters From Experimental Data for Reduced Order Models
,”
Ph.D. dissertation
, University of Cincinnati, Cincinnati, OH.https://etd.ohiolink.edu/pg_10?0::NO:10:P10_ACCESSION_NUM:ucin1163016945
27.
Li
,
J.
, and
Law
,
S.
,
2011
, “
Substructural Response Reconstruction in Wavelet Domain
,”
ASME J. Appl. Mech.
,
78
(
4
), p.
041010
.
28.
Brandt
,
A.
,
2011
,
Noise and Vibration Analysis: Signal Analysis and Experimental Procedures
,
Wiley
,
New York
.
29.
Oppenheim
,
A. V.
,
Willsky
,
A. S.
, and
Nawab
,
S. H.
,
2014
,
Signals and Systems
,
Pearson
,
New York
.
30.
Gilardi
,
G.
, and
Sharf
,
I.
,
2002
, “
Literature Survey of Contact Dynamics Modelling
,”
Mech. Mach. Theory
,
37
(
10
), pp.
1213
1239
.
31.
Ribeiro
,
A.
,
Silva
,
J.
, and
Maia
,
N.
,
2000
, “
On the Generalisation of the Transmissibility Concept
,”
Mech. Syst. Signal Process.
,
14
(
1
), pp.
29
35
.
32.
Friswell
,
M.
, and
Mottershead
,
J. E.
,
1995
,
Finite Element Model Updating in Structural Dynamics
,
Springer Science & Business Media
,
Dordrecht, The Netherlands
.
33.
Moens
,
D.
, and
Vandepitte
,
D.
,
2002
, “
Fuzzy Finite Element Method for Frequency Response Function Analysis of Uncertain Structures
,”
AIAA J.
,
40
(
1
), pp.
126
136
.
34.
Hughes
,
T. J.
,
2012
,
The Finite Element Method: Linear Static and Dynamic Finite Element Analysis
,
Dover Publications
,
Mineola, NY
.
35.
Canbaloğlu
,
G.
, and
Özgüven
,
H. N.
,
2014
, “
Model Updating of Nonlinear Structures
,”
Nonlinear Dynamics
, Vol.
2
,
Springer International Publishing
,
Cham, Switzerland
, pp.
69
81
.
36.
Canbaloğlu
,
G.
, and
Özgüven
,
H. N.
,
2016
, “
Model Updating of Nonlinear Structures From Measured FRFs
,”
Mech. Syst. Signal Process.
,
80
, pp.
282
301
.
37.
Canbaloğlu
,
G.
, and
Özgüven
,
H. N.
,
2013
, “
Obtaining Linear FRFs for Model Updating in Structures With Multiple Nonlinearities Including Friction
,”
Topics in Nonlinear Dynamics
, Vol.
1
,
Springer
,
New York
, pp.
145
157
.
38.
Flores
,
P.
,
Ambrósio
,
J.
, and
Claro
,
J. P.
,
2004
, “
Dynamic Analysis for Planar Multibody Mechanical Systems With Lubricated Joints
,”
Multibody Syst. Dyn.
,
12
(
1
), pp.
47
74
.
39.
Flores
,
P.
,
2010
, “
A Parametric Study on the Dynamic Response of Planar Multibody Systems With Multiple Clearance Joints
,”
Nonlinear Dyn.
,
61
(
4
), pp.
633
653
.
40.
Liu
,
J.
, and
Li
,
B.
,
2016
, “
Theoretical and Experimental Identification of Clearance Nonlinearities for a Continuum Structure
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
4
), p.
041019
.
41.
Chopra
,
A. K.
,
1995
,
Dynamics of Structures
,
Prentice Hall
,
Upper Saddle River, NJ
.
42.
Zou
,
K.
, and
Nagarajaiah
,
S.
,
2015
, “
Study of a Piecewise Linear Dynamic System With Negative and Positive Stiffness
,”
Commun. Nonlinear Sci. Numer. Simul.
,
22
(
1
), pp.
1084
1101
.
43.
Zou
,
K.
, and
Nagarajaiah
,
S.
,
2015
, “
The Solution Structure of the Düffing Oscillator's Transient Response and General Solution
,”
Nonlinear Dyn.
,
81
(
1–2
), pp.
621
639
.
44.
Haroon
,
M.
, and
Adams
,
D. E.
,
2009
, “
A Modified H2 Algorithm for Improved Frequency Response Function and Nonlinear Parameter Estimation
,”
J. Sound Vib.
,
320
(
4–5
), pp.
822
837
.
45.
Brandt
,
A.
, and
Brincker
,
R.
,
2011
, “
Impact Excitation Processing for Improved Frequency Response Quality
,” Structural Dynamics, Vol. 3, Springer, New York, pp.
89
95
.
You do not currently have access to this content.