Elastic-driven slender filaments subjected to compressive follower forces provide a synthetic way to mimic the oscillatory beating of biological flagella and cilia. Here, we use a continuum model to study the dynamical, nonlinear buckling instabilities that arise due to the action of nonconservative follower forces on a prestressed slender rod clamped at both ends and allowed to move in a fluid. Stable oscillatory responses are observed as a result of the interplay between the structural elastic instability of the inextensible slender rod, geometric constraints that control the onset of instability, energy pumped into the system by the active follower forces, and motion-driven fluid dissipation. Initial buckling instabilities are initiated by the effect of the follower forces and inertia; fluid drag subsequently allows for the active energy pumped into the system to be dissipated away and results in self-limiting amplitudes. By integrating the equations of equilibrium and compatibility conditions with linear constitutive laws, we compute the critical follower forces for the onset of oscillations, emergent frequencies of these solutions, and the postcritical nonlinear rod shapes for two forms of the drag force, namely linear Stokes drag and quadratic Morrison drag. For a rod with fixed inertia and drag parameters, the minimum (critical) force required to initiate stable oscillations depends on the initial slack and weakly on the nature of the drag force. Emergent frequencies and the amplitudes postonset are determined by the extent of prestress as well as the nature of the fluid drag. Far from onset, for large follower forces, the frequency of the oscillations can be predicted by evoking a power balance between the energy input by the active forces and the dissipation due to fluid drag.

References

References
1.
Langthjem
,
M.
, and
Sugiyama
,
Y.
,
2000
, “
Dynamic Stability of Columns Subjected to Follower Loads: A Survey
,”
J. Sound Vib.
,
238
(
5
), pp.
809
851
.
2.
Elishakoff
,
I.
,
2005
, “
Controversy Associated With the so-Called “Follower Forces”: Critical Overview
,”
ASME Appl. Mech. Rev.
,
58
(
2
), p.
117
.
3.
Bolotin
,
V. V.
,
1999
, “
Dynamic Instabilities in Mechanics of Structures
,”
ASME Appl. Mech. Rev.
,
55
(
1
), pp.
R1
R9
.
4.
Leipholz
,
H. H. E.
,
1980
,
Stability of Elastic Systems/Horst Leipholz
,
Sijthoff and Noordhoff/Alphen aan den Rijn
, Alphen aan den Rijn,
The Netherlands
.
5.
Reut
,
V. I.
,
1939
, “
About the Theory of Elastic Stability
,”
Odessa Institute of Civil and Communal Engineering
, p. 1.
6.
Pfluger
,
A.
,
1950
,
Stabilitatsprobleme Der Elastostatik
,
Springer-Verlag
,
Berlin
.
7.
Beck
,
M.
,
1952
, “
Die Knicklast Des Einseitig Eingespannten, Tangential Gedruckten Stabes
,”
ZAMP Z. Fur Angew. Math. Phys.
,
3
(
3
), pp.
225
228
.
8.
Païdoussis
,
M. P.
,
2016
,
Fluid-Structure Interactions: Slender Structures and Axial Flow
,
2nd ed.
, Academic Press, London.
9.
Païdoussis
,
M. P.
, and
Li
,
G. X.
,
1993
, “
Pipes Conveying Fluid: A Model Dynamical Problem
,”
J. Fluids Struct.
,
7
(
2
), pp.
137
204
.
10.
Wood
,
W. G.
,
Saw
,
S. S.
, and
Saunders
,
P. M.
,
1969
, “
The Kinetic Stability of a Tangentially Loaded Strut
,”
Proc. R. Soc. A: Math.
,
313
(
1513
), pp.
239
248
.
11.
Païdoussis
,
M.
,
1973
, “
Dynamics of Cylindrical Structures Subjected to Axial Flow
,”
J. Sound Vib.
,
29
(
3
), pp.
365
385
.
12.
Kang
,
B.
, and
Tan
,
C. A.
,
2000
, “
Parametric Instability of a Leipholz Column Under Periodic Excitation
,”
J. Sound Vib.
,
229
(
5
), pp.
1097
1113
.
13.
Dreyfus
,
R.
,
Baudry
,
J.
,
Roper
,
M. L.
,
Fermigier
,
M.
,
Stone
,
H. A.
, and
Bibette
,
J.
,
2005
, “
Microscopic Artificial Swimmers
,”
Nature
,
437
(
7060
), pp.
862
865
.
14.
Babataheri
,
A.
,
Roper
,
M.
,
Fermigier
,
M.
, and
Du Roure
,
O.
,
2011
, “
Tethered Fleximags as Artificial Cilia
,”
J. Fluid Mech.
,
678
, pp.
5
13
.
15.
Sasaki
,
Y.
,
Takikawa
,
Y.
,
Jampani
,
V. S. R.
,
Hoshikawa
,
H.
,
Seto
,
T.
,
Bahr
,
C.
,
Herminghaus
,
S.
,
Hidaka
,
Y.
, and
Orihara
,
H.
,
2014
, “
Colloidal Caterpillars for Cargo Transportation
,”
Soft Matter
,
10
(
44
), pp.
8813
8820
.
16.
Patteson
,
A. E.
,
Gopinath
,
A.
, and
Arratia
,
P. E.
,
2016
, “
Active Colloids in Complex Fluids
,”
Curr. Opin. Colloid Interface Sci.
,
21
, pp.
86
96
.
17.
Chelakkot
,
R.
,
Gopinath
,
A.
,
Mahadevan
,
L.
, and
Hagan
,
M. F.
,
2014
, “
Flagellar Dynamics of a Connected Chain of Active, Polar, Brownian Particles
,”
J. R. Soc., Interface
,
11
(
92
), p.
20130884
.
18.
Vaziri
,
A.
, and
Gopinath
,
A.
,
2008
, “
Cell and Biomolecular Mechanics in Silico
,”
Nat. Mater.
,
7
(
1
), pp.
15
23
.
19.
Gopinath
,
A.
, and
Mahadevan
,
L.
,
2011
, “
Elastohydrodynamics of Wet Bristles, Carpets and Brushes
,”
Proc. R. Soc. A
,
467
(
2130
), pp.
1665
1685
.
20.
Vaziri
,
A.
,
Gopinath
,
A.
, and
Deshpande
,
V. S.
,
2007
, “
Continuum-Based Computational Models for Cell and Nuclear Mechanics
,”
J. Mech. Mater. Struct.
,
2
(
6
), pp.
1169
1191
.
21.
Qin
,
B.
,
Gopinath
,
A.
,
Yang
,
J.
,
Gollub
,
J. P.
, and
Arratia
,
P. E.
,
2015
, “
Flagellar Kinematics and Swimming of Algal Cells in Viscoelastic Fluids
,”
Sci. Rep.
,
5
, p. 9190.
22.
Maghsoodi
,
A.
,
Chatterjee
,
A.
,
Andricioaei
,
I.
, and
Perkins
,
N. C.
,
2017
, “
Dynamic Model Exposes the Energetics and Dynamics of the Injection Machinery for Bacteriophage T4
,”
Biophys. J.
,
113
(
1
), pp.
195
205
.
23.
Maghsoodi
,
A.
,
Chatterjee
,
A.
,
Andricioaei
,
I.
, and
Perkins
,
N. C.
,
2016
, “
A First Model of the Dynamics of the Bacteriophage T4 Injection Machinery
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
4
), p.
041026
.
24.
Goyal
,
S.
,
2006
, “
A Dynamic Rod Model to Simulate Mechanics of Cables and DNA
,” Ph.D. dissertation, University of Michigan, Ann Arbor, MI.
25.
Goyal
,
S.
,
Perkins
,
N. C.
, and
Lee
,
C. L.
,
2005
, “
Nonlinear Dynamics and Loop Formation in Kirchhoff Rods With Implications to the Mechanics of DNA and Cables
,”
J. Comput. Phys.
,
209
(
1
), pp.
371
389
.
26.
De Canio
,
G.
,
Lauga
,
E.
, and
Goldstein
,
R. E.
,
2017
, “
Spontaneous Oscillations of Elastic Filaments Induced by Molecular Motors
,”
J. R. Soc. Interface
,
14
(
136
), p. 20170491.
27.
Herrmann
,
G.
, and
Bungay
,
R. W.
,
1964
, “
On the Stability of Elastic Systems Subjected to Nonconservative Forces
,”
ASME J. Appl. Mech.
,
31
(
3
), pp.
435
440
.
28.
Bayly
,
P. V.
, and
Dutcher
,
S. K.
,
2016
, “
Steady Dynein Forces Induce Flutter Instability and Propagating Waves in Mathematical Models of Flagella
,”
J. R. Soc. Interface
,
13
(
123
), p. 20160523.
29.
Kirchhoff
,
G.
,
1859
, “
Uber Das Gleichgewicht Und Die Bewegung Eines Unendlich Dunnen Elastischen Stabes
,”
J. Reine Angew. Math.
,
56
(
56
), pp.
285
343
.
30.
Chung
,
J.
, and
Hulbert
,
G. M.
,
1993
, “
A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation - the Generalized-Alpha Method
,”
ASME J. Appl. Mech.
,
60
(
2
), pp.
371
375
.
31.
Gobat
,
J. I.
, and
Grosenbaugh
,
M. A.
,
2001
, “
Application of the Generalized-Alpha Method to the Time Integration of the Cable Dynamics Equations
,”
Comput. Methods Appl. Mech. Eng.
,
190
(
37–38
), pp.
4817
4829
.
32.
van der Heijden
,
G.
,
Neukirch
,
S.
,
Goss
,
V.
, and
Thompson
,
J.
,
2003
, “
Instability and Self-Contact Phenomena in the Writhing of Clamped Rods
,”
Int. J. Mech. Sci.
,
45
(
1
), pp.
161
196
.
33.
Fatehiboroujeni
,
S.
,
Palanthandalam-Madapusi
,
H. J.
, and
Goyal
,
S.
,
2018
, “
Computational Rod Model With User-Defined Nonlinear Constitutive Laws
,”
ASME. J. Comput. Nonlinear Dynam.
,
13
(
10
), p.
101006
.
34.
Goyal
,
S.
,
Perkins
,
N.
, and
Lee
,
C. L.
,
2008
, “
Non-Linear Dynamic Intertwining of Rods With Self-Contact
,”
Int. J. Non-Linear Mech.
,
43
(
1
), pp.
65
73
.
35.
Anwar
,
Z.
,
Gopinath
,
A.
, and
Armstrong
,
R. C.
,
2012
, “
Systems Analysis of Hybrid, Multi-Scale Complex Flow Simulations Using Newton-GMRES
,”
Rheol. Acta
,
51
(
9
), pp.
849
866
.
36.
Gear
,
C. W.
,
Kaper
,
T. J.
,
Kevrekidis
,
I. G.
, and
Zagaris
,
A.
,
2005
, “
Projecting to a Slow Manifold: Singularly Perturbed Systems and Legacy Codes
,”
SIAM J. Appl. Dyn. Syst.
,
4
(
3
), pp.
711
732
.
You do not currently have access to this content.