A typical phenomenon of the fractional order system is presented to describe the initial value problem from a brand-new perspective in this paper. Several simulation examples are given to introduce the named aberration phenomenon, which reflects the complexity and the importance of the initial value problem. Then, generalizations on the infinite dimensional property and the long memory property are proposed to reveal the nature of the phenomenon. As a result, the relationship between the pseudo state-space model and the infinite dimensional exact state-space model is demonstrated. It shows the inborn defects of the initial values of the fractional order system. Afterward, the pre-initial process and the initialization function are studied. Finally, specific methods to estimate exact state-space models and fit initialization functions are proposed.

References

References
1.
Sierociuk
,
D.
,
Skovranek
,
T.
,
Macias
,
M.
,
Podlubny
,
I.
,
Petras
,
I.
,
Dzielinski
,
A.
, and
Ziubinski
,
P.
,
2015
, “
Diffusion Process Modeling by Using Fractional-Order Models
,”
Appl. Math. Comput.
,
257
, pp.
2
11
.
2.
Dai
,
Y.
,
Wei
,
Y. H.
,
Hu
,
Y.
, and
Wang
,
Y.
,
2016
, “
Modulating Function-Based Identification for Fractional Order Systems
,”
Neurocomputing
,
173
(
3
), pp.
1959
1966
.
3.
Hu
,
Y. S.
,
Fan
,
Y.
,
Wei
,
Y. H.
,
Wang
,
Y.
, and
Liang
,
Q.
,
2015
, “
Subspace-Based Continuous-Time Identification of Fractional Order Systems From Non-Uniformly Sampled Data
,”
Int. J. Syst. Sci.
,
47
(
1
), pp.
122
134
.
4.
Chen
,
Y. Q.
,
Wei
,
Y. H.
,
Zhong
,
H.
, and
Wang
,
Y.
,
2016
, “
Sliding Mode Control With a Second-Order Switching Law for a Class of Nonlinear Fractional Order Systems
,”
Nonlinear Dyn.
,
85
(
1
), pp.
633
643
.
5.
Wei
,
Y. H.
,
Tse
,
P. W.
,
Yao
,
Z.
, and
Wang
,
Y.
,
2017
, “
The Output Feedback Control Synthesis for a Class of Singular Fractional Order Systems
,”
ISA Trans.
,
69
(
Suppl. C
), pp.
1
9
.
6.
Yang
,
Q.
,
Zhang
,
Y. Z.
,
Zhao
,
T.
, and
Chen
,
Y. Q.
,
2017
, “
Single Image Super-Resolution Using Self-Optimizing Mask Via Fractional-Order Gradient Interpolation and Reconstruction
,”
ISA Trans.
(epub).
7.
Trigeassou
,
J. C.
,
Maamri
,
N.
,
Sabatier
,
J.
, and
Oustaloup
,
A.
,
2012
, “
State Variables and Transients of Fractional Order Differential Systems
,”
Comput. Math. Appl.
,
64
(
10
), pp.
3117
3140
.
8.
Liu
,
S.
,
Zhou
,
X.-F.
,
Li
,
X.
, and
Jiang
,
W.
,
2017
, “
Asymptotical Stability of Riemann-Liouville Fractional Singular Systems With Multiple Time-Varying Delays
,”
Appl. Math. Lett.
,
65
, pp.
32
39
.
9.
Trigeassou
,
J. C.
,
Poinot
,
T.
,
Lin
,
J.
,
Oustaloup
,
A.
, and
Levron
,
F.
,
1999
, “
Modeling and Identification of a Non Integer Order System
,”
European Control Conference
(
ECC
), Karlsruhe, Germany, Aug. 31–Sept. 3, pp.
2453
2458
.
10.
Trigeassou
,
J. C.
,
Maamri
,
N.
,
Sabatier
,
J.
, and
Oustaloup
,
A.
,
2012
, “
Transients of Fractional-Order Integrator and Derivatives
,”
Signal, Image Video Process.
,
6
(
3
), pp.
359
372
.
11.
Trigeassou
,
J. C.
,
Maamri
,
N.
, and
Oustaloup
,
A.
,
2013
, “
The Infinite State Approach: Origin and Necessity
,”
Comput. Math. Appl.
,
66
(
5
), pp.
892
907
.
12.
Hartley
,
T. T.
,
Lorenzo
,
C. F.
,
Trigeassou
,
J.-C.
, and
Maamri
,
N.
,
2013
, “
Equivalence of History-Function Based and Infinite-Dimensional-State Initializations for Fractional-Order Operators
,”
ASME J. Comput. Nonlinear Dyn.
,
8
(
4
), p.
041014
.
13.
Trigeassou
,
J. C.
, and
Maamri
,
N.
,
2009
, “
State Space Modeling of Fractional Differential Equations and the Initial Condition Problem
,”
Sixth International Multi-Conference on Systems, Signals and Devices
, Djerba, Tunisia, Mar. 23–26, pp.
1
7
.
14.
Tari
,
M.
,
Maamri
,
N.
, and
Trigeassou
,
J. C.
,
2016
, “
Initial Conditions and Initialization of Fractional Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
4
), p.
041014
.
15.
Trigeassou
,
J. C.
, and
Maamri
,
N.
,
2011
, “
Initial Conditions and Initialization of Linear Fractional Differential Equations
,”
Signal Process.
,
91
(
3
), pp.
427
436
.
16.
Maamri
,
N.
,
Tari
,
M.
, and
Trigeassou
,
J. C.
,
2017
, “
Improved Initialization of Fractional Order Systems
,”
IFAC Pap. Online
,
50
(
1
), pp.
8567
8573
.
17.
Diethelm
,
K.
,
Ford
,
N. J.
,
Freed
,
A. D.
, and
Luchko
,
Y.
,
2005
, “
Algorithms for the Fractional Calculus: A Selection of Numerical Methods
,”
Comput. Methods Appl. Mech. Eng.
,
194
(
6–8
), pp.
743
773
.
18.
Li
,
C.
,
Chen
,
A.
, and
Ye
,
J.
,
2011
, “
Numerical Approaches to Fractional Calculus and Fractional Ordinary Differential Equation
,”
J. Comput. Phys.
,
230
(
9
), pp.
3352
3368
.
19.
Kumar
,
P.
, and
Agrawal
,
O. P.
,
2006
, “
An Approximate Method for Numerical Solution of Fractional Differential Equations
,”
Signal Process.
,
86
(
10
), pp.
2602
2610
.
20.
Xue
,
D. Y.
, and
Bai
,
L.
,
2017
, “
Numerical Algorithms for Caputo Fractional-Order Differential Equations
,”
Int. J. Control
,
90
(
6
), pp.
1201
1211
.
21.
Du
,
M. L.
, and
Wang
,
Z. H.
,
2011
, “
Initialized Fractional Differential Equations With Riemann-Liouville Fractional-Order Derivative
,”
Eur. Phys. J.: Spec. Top.
,
193
(
1
), pp.
49
60
.
22.
Hartley
,
T. T.
, and
Lorenzo
,
C. F.
,
1998
, “
Insights Into the Initialization of Fractional Order Operators Via Semi-Infinite Lines
,” National Aeronautics and Space Administration/Glenn Research Center, Cleveland, OH, Report No.
NASA TM-208407
.https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19990021317.pdf
23.
Lorenzo
,
C. F.
, and
Hartley
,
T. T.
,
2000
, “
Initialized Fractional Calculus
,” National Aeronautics and Space Administration/Glenn Research Center, Cleveland, OH, Report No. TP-2000-20994.
24.
Hartley
,
T. T.
, and
Lorenzo
,
C. F.
,
2009
, “
The Error Incurred in Using the Caputo-Derivative Laplace-Transform
,”
ASME
Paper No. DETC2009-87648
.
25.
Sabatier
,
J.
,
Merveillaut
,
M.
,
Malti
,
R.
, and
Oustaloup
,
A.
,
2010
, “
How to Impose Physically Coherent Initial Conditions to a Fractional System
,”
Commun. Nonlinear Sci. Numer. Simul.
,
15
(
5
), pp.
1318
1326
.
26.
Li
,
Y.
, and
Zhao
,
Y.
,
2015
, “
Memory Identification of Fractional Order Systems: Background and Theory
,”
27th Chinese Control and Decision Conference
(
CCDC
), Qingdao, China, May 23–25, pp.
1038
1043
.
27.
Montseny
,
G.
,
1998
, “
Diffusive Representation of Pseudo-Differential Time-Operators
,”
Fractional Differ. Syst.: Models, Methods Appl.
,
5
, pp.
159
175
.
28.
Gao
,
Z.
, and
Liao
,
X. Z.
,
2013
, “
Integral Sliding Mode Control for Fractional-Order Systems With Mismatched Uncertainties
,”
Nonlinear Dyn.
,
72
(
1–2
), pp.
27
35
.
29.
HosseinNia
,
S. H.
,
Tejado
,
I.
,
Torres
,
D.
,
Vinagre
,
B. M.
, and
Feliu
,
V.
,
2014
, “
A General Form for Reset Control Including Fractional Order Dynamics
,”
IFAC Proc. Vol.
,
47
(3), pp. 2028–2033.
30.
Liang
,
S.
,
2015
, “
Control Theory of Fractional Order Systems
,” Ph.D. thesis, University of Science and Technology of China, Hefei, China.
31.
Du
,
B.
,
Wei
,
Y. H.
,
Liang
,
S.
, and
Wang
,
Y.
,
2016
, “
Estimation of Exact Initial States of Fractional Order Systems
,”
Nonlinear Dyn.
,
86
(
3
), pp.
2061
2070
.
32.
Wei
,
Y. H.
,
Tse
,
P. W.
,
Du
,
B.
, and
Wang
,
Y.
,
2016
, “
An Innovative Fixed-Pole Numerical Approximation for Fractional Order Systems
,”
ISA Trans.
,
62
, pp.
94
102
.
33.
Monje
,
C. A.
,
Chen
,
Y. Q.
, and
Vinagre
,
B. M.
,
2010
,
Fractional-Order Systems and Controls: Fundamentals and Applications
,
Springer
,
London
.
34.
Trigeassou
,
J.-C.
,
Maamri
,
N.
,
Sabatier
,
J.
, and
Oustaloup
,
A.
,
2011
, “
A Lyapunov Approach to the Stability of Fractional Differential Equations
,”
Signal Process.
,
91
(
3
), pp.
437
445
.
35.
Hartley
,
T. T.
,
Trigeassou
,
J.-C.
,
Lorenzo
,
C. F.
, and
Maamri
,
N.
,
2015
, “
Energy Storage and Loss in Fractional-Order Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
6
), p.
061006
.
You do not currently have access to this content.