This paper aims to perform a complete Noether symmetry analysis of a generalized hyperbolic Lane–Emden system. Several constraints for which Noether symmetries exist are derived. In addition, we construct conservation laws associated with the admitted Noether symmetries. Thereafter, we briefly discuss the physical meaning of the derived conserved vectors.

References

References
1.
Muatjetjeja
,
B.
, and
Khalique
,
C. M.
,
2013
, “
Conservation Laws for a Generalized Coupled Bidimensional Lane-Emden System
,”
Commun. Nonlinear Sci. Numer. Simul.
,
18
(
4
), pp.
851
857
.
2.
Bozhkov
,
Y.
, and
Martins
,
A. C. G.
,
2004
, “
Lie Point Symmetries of the Lane-Emden Systems
,”
J. Math. Anal. Appl.
,
294
(
1
), pp.
334
344
.
3.
Bozhkov
,
Y.
, and
Freire
,
I. L.
,
2012
, “
Symmetry Analysis of the Bidimensional Lane-Emden Systems
,”
J. Math. Anal. Appl.
,
388
(
2
), pp.
1279
1284
.
4.
Mogorosi
,
T. E.
,
Freire
,
I. L.
,
Muatjetjeja
,
B.
, and
Khalique
,
C. M.
,
2017
, “
Group Analysis of a Hyperbolic Lane-Emden System
,”
Appl. Math. Comput.
,
292
, pp.
156
164
.
5.
Freire
,
I. L.
, and
Muatjetjeja
,
B.
,
2018
, “
Symmetry Analysis of a Lane-Emden-Klein-Gordon-Fock System With Central Symmetry
,”
Discrete Contin. Dyn. Syst. Ser. S
,
11
(
4
), pp.
685
691
.
6.
Bozhkov
,
Y.
, and
Mitidieri
,
E.
,
2007
, “
Lie Symmetries and Criticality of Semilinear Differential Systems
,” e-print
arXiv:math-ph/0703071
.https://arxiv.org/abs/math-ph/0703071
7.
Serrin
,
J.
, and
Zou
,
H.
,
1996
, “
Non-Existence of Positive Solutions of Lane-Eden Systems
,”
Differ. Integr. Equations
,
9
(4), pp.
635
653
.
8.
Muatjetjeja
,
B.
, and
Khalique
,
C. M.
,
2014
, “
Benjamin-Bona-Mahony Equation With Variable Coefficients: Conservation Laws
,”
Symmetry
,
6
(
4
), pp.
1026
1036
.
9.
Noether
,
E.
,
1918
, “
Invariante Variationsprobleme. König Gesell Wissen Göttingen
,”
Math.-Phys. Kl Heft
,
2
(19), pp.
235
257
.
10.
Kara
,
A. H.
, and
Mahomed
,
F. M.
,
2000
, “
Relationship Between Symmetries and Conservation
,”
Int. J. Theor. Phys.
,
39
(
1
), pp.
23
40
.
11.
Akgül
,
A.
,
Inc
,
M.
,
Karatas
,
E.
, and
Baleanu
,
D.
,
2015
, “
Numerical Solutions of Fractional Differential Equations of Lane-Emden Type by an Accurate Technique
,”
Adv. Differ. Equations
,
2015
(
1
), p.
220
.
12.
Kumar
,
D.
,
Singh
,
J.
, and
Baleanu
,
D.
,
2018
, “
A New Analysis of Fornberg-Whitham Equation Pertaining to a Fractional Derivative With Mittag-Leffler Type Kernel
,”
Eur. Phys. J. Plus
,
133
(
2
), p.
70
.
13.
Kumar
,
D.
,
Singh
,
J.
, and
Baleanu
,
D.
,
2018
, “
Modified Kawahara Equation Within a Fractional Derivative With Non-Singular Kernel
,”
Therm. Sci.
,
22
(
2
), pp.
789
796
.
14.
Singh
,
H.
,
Srivastava
,
H. M.
, and
Kumar
,
D.
,
2017
, “
A Reliable Algorithm for the Approximate Solution of the Nonlinear Lane-Emden Type Equations Arising in Astrophysics
,”
Numer. Methods Partial Differ. Equations
,
34
(5), pp.
1524
1555
.
15.
Kumar
,
D.
,
Agarwa
,
R. P.
, and
Singh
,
J.
,
2018
, “
A Modified Numerical Scheme and Convergence Analysis for Fractional Model of Lienard's Equation
,”
J. Comput. Appl Math.
,
339
, pp.
405
413
.
16.
Kumar
,
D.
,
Singh
,
J.
, and
Baleanu
,
D.
,
2017
, “
A New Analysis for Fractional Model of Regularized Long-Wave Equation Arising in Ion Acoustic Plasma Waves
,”
Math. Method. Appl. Sci.
,
40
(
15
), pp.
5642
5653
.
You do not currently have access to this content.