Saddle-node or period-doubling bifurcations of the near-grazing impact periodic motions have been extensively studied in the impact oscillators, but the near-grazing Neimark-Sacker bifurcations have not been discussed yet. For the first time, this paper uncovers the novel dynamic behavior of Neimark-Sacker bifurcations, which can appear in a small neighborhood of the degenerate grazing point in a two degree-of-freedom impact oscillator. The higher order discontinuity mapping technique is used to determine the degenerate grazing point. Then, shooting method is applied to obtain the one-parameter continuation of the elementary impact periodic motion near degenerate grazing point and the peculiar phenomena of Neimark-Sacker bifurcations are revealed consequently. A two-parameter continuation is presented to illustrate the relationship between the observed Neimark-Sacker bifurcations and degenerate grazing point. New features that differ from the reported situations in literature can be found. Finally, the observed Neimark-Sacker bifurcation is verified by checking the existence and stability conditions in line with the generic theory of Neimark-Sacker bifurcation. The unstable bifurcating quasi-periodic motion is numerically demonstrated on the Poincaré section.

References

References
1.
Brzeski
,
P.
,
Chong
,
A. S. E.
,
Wiercigroch
,
M.
, and
Perlikowski
,
P.
,
2018
, “
Impact Adding Bifurcation in an Autonomous Hybrid Dynamical Model of Church Bell
,”
Mech. Syst. Signal Process
,
104
, pp.
716
724
.
2.
Baumann
,
M.
,
Biemond
,
J. J. B.
,
Leine
,
R. I.
, and
Wouwe
,
N. V. D.
,
2018
, “
Synchronization of Impacting Mechanical Systems With a Single Constraint
,”
Phys. D
,
362
, pp.
9
23
.
3.
Xue
,
S.
, and
Fan
,
J.
,
2018
, “
Discontinuous Dynamical Behaviors in a Vibro-Impact System With Multiple Constraints
,”
Int. J. Non-Linear Mech.
,
98
, pp.
75
101
.
4.
Rebouças
,
G. F. S.
,
Santos
,
I. F.
, and
Thomsen
,
J. J.
,
2018
, “
Validation of Vibro-Impact Force Models by Numerical Simulation, Perturbation Methods and Experiments
,”
J. Sound Vib.
,
413
, pp.
291
307
.
5.
Zhang
,
Y. X.
, and
Luo
,
G. W.
,
2018
, “
Multistability of a Three-Degree-of-Freedom Vibro-Impact System
,”
Commun. Nonlinear Sci. Numer. Simul.
,
57
, pp.
331
341
.
6.
Zhang
,
Y. X.
, and
Luo
,
G. W.
,
2017
, “
Detecting Unstable Periodic Orbits and Unstable Quasiperiodic Orbits in Vibro-Impact Systems
,”
Int. J. Non-Linear Mech.
,
96
, pp.
12
21
.
7.
Akhmet
,
M.
, and
Çağ
,
S.
,
2017
, “
Chattering as a Singular Problem
,”
Nonlinear Dyn.
,
90
(
4
), pp.
2797
2812
.
8.
Chávez
,
J. P.
,
Brzeski
,
P.
, and
Perlikowski
,
P.
,
2017
, “
Bifurcation Analysis of Non-Linear Oscillators Interacting Via Soft Impacts
,”
Int. J. Non-Linear Mech.
,
92
, pp.
76
83
.
9.
Liu
,
Y.
, and
Chávez
,
J. P.
,
2017
, “
Controlling Coexisting Attractors of an Impacting System Via Linear Augmentation
,”
Phys. D
,
348
, pp.
1
11
.
10.
Li
,
G. F.
,
Ding
,
W. C.
, and
Wu
,
S. P.
,
2017
, “
Global Behavior of a Vibro-Impact System With Multiple Nonsmooth Mechanical Factors
,”
ASME J. Comput. Nonlinear Dyn.
,
12
(
6
), p.
061004
.
11.
Simpson
,
D. J. W.
,
2017
, “
Grazing-Sliding Bifurcations Creating Infinitely Many Attractors
,”
Int. J. Bifurcation Chaos
,
27
(
12
), p.
1730042
.
12.
Hős
,
C.
, and
Champneys
,
A. R.
,
2012
, “
Grazing Bifurcations and Chatter in a Pressure Relief Valve Model
,”
Phys. D
,
241
(
22
), pp.
2068
2076
.
13.
Makarenkov
,
O.
, and
Lamb
,
J. S. W.
,
2012
, “
Dynamics and Bifurcations of Nonsmooth Systems: A Survey
,”
Phys. D
,
241
(
22
), pp.
1826
1844
.
14.
Mason
,
J. F.
, and
Piiroinen
,
P. T.
,
2011
, “
Interactions Between Global and Grazing Bifurcations in an Impacting System
,”
Chaos
,
21
(
1
), p.
013113
.
15.
Mason
,
J. F.
, and
Piiroinen
,
P. T.
,
2009
, “
The Effect of Codimension-Two Bifurcations on the Global Dynamics of a Gear Model
,”
SIAM J. Appl. Dyn. Syst.
,
8
(
4
), pp.
1694
1711
.
16.
di Bernardo
,
M.
,
Budd
,
C. J.
,
Champneys
,
A. R.
, and
Kowalczyk
,
P.
,
2008
,
Piecewise-Smooth Dynamical Systems: Theory and Applications
,
Springer-Verlag
,
London
.
17.
Mehran
,
K.
,
Zahawi
,
B.
, and
Giaouris
,
D.
,
2012
, “
Investigation of the Near-Grazing Behavior in Hard-Impact Oscillators Using Model-Based TS Fuzzy Approach
,”
Nonlinear Dyn.
,
69
(
3
), pp.
1293
1309
.
18.
Peterka
,
F.
,
1996
, “
Bifurcations and Transition Phenomena in an Impact Oscillator
,”
Chaos Soliton. Fractals
,
7
(
10
), pp.
1635
1647
.
19.
Foale
,
S.
,
1994
, “
Analytical Determination of Bifurcations in an Impact Oscillator
,”
Proc. Soc. Lond. A
,
347
(
1683
), pp.
353
364
.
20.
Zhao
,
X. P.
, and
Dankowicz
,
H.
,
2006
, “
Unfolding Degenerate Grazing Dynamics in Impact Actuators
,”
Nonlinearity
,
19
(
2
), pp.
399
418
.
21.
Dankowicz
,
H.
, and
Zhao
,
X. P.
,
2005
, “
Local Analysis of co-Dimension-One and co-Dimension-Two Grazing Bifurcations in Impact Microactuators
,”
Phys. D.
,
202
(
3–4
), pp.
238
257
.
22.
Yin
,
S.
,
Shen
,
Y. K.
,
Wen
,
G. L.
, and
Xu
,
H. D.
,
2017
, “
Analytical Determination for Degenerate Grazing Bifurcation Points in the Single-Degree-of-Freedom Impact Oscillator
,”
Nonlinear Dyn.
,
90
(
1
), pp.
443
456
.
23.
Qin
,
W. Y.
,
Su
,
H.
, and
Yang
,
Y. F.
,
2008
, “
Grazing Bifurcation and Chaos in Response of Rubbing Rotor
,”
Chaos Soliton. Fractals
,
37
(
1
), pp.
166
174
.
24.
Wen
,
G. L.
,
Yin
,
S.
,
Xu
,
H. D.
,
Zhang
,
S. J.
, and
Lv
,
Z. Y.
,
2016
, “
Analysis of Grazing Bifurcation From Periodic Motion to Quasi-Periodic Motion in Impact-Damper Systems
,”
Chaos Soliton. Fractals
,
83
, pp.
112
118
.
25.
Yin
,
S.
,
Wen
,
G. L.
,
Shen
,
Y. K.
, and
Xu
,
H. D.
,
2017
, “
Instability Phenomena in Impact Damper System: From Quasi-Periodic Motion to Period-Three Motion
,”
J. Sound Vib.
,
391
, pp.
170
179
.
26.
Suda
,
N.
, and
Banerjee
,
S.
,
2016
, “
Why Does Narrow Band Chaos in Impact Oscillators Disappear Over a Range of Frequencies?
,”
Nonlinear Dyn.
,
86
(
3
), pp.
2017
2022
.
27.
Xu
,
H. D.
,
Yin
,
S.
,
Wen
,
G. L.
,
Zhang
,
S. J.
, and
Lv
,
Z. Y.
,
2017
, “
Discrete-in-Time Feedback Control of Near-Grazing Dynamics in the Two-Degree-of-Freedom Vibro-Impact System With a Clearance
,”
Nonlinear Dyn.
,
87
(
2
), pp.
1617
1627
.
28.
Humphries
,
N.
, and
Piiroinen
,
P. T.
,
2012
, “
A Discontinuty-Geometry View of the Relationship Between Saddle-Node and Grazing Bifurcations
,”
Phys. D
,
241
(
22
), pp.
1911
1918
.
29.
Jiang
,
H. B.
,
Chong
,
A. S. E.
,
Ueda
,
Y.
, and
Wiercigroch
,
M.
,
2017
, “
Grazing-Induced Bifurcations in Impact Oscillators With Elastic and Rigid Constraints
,”
Int. J. Mech. Sci.
,
127
, pp.
204
214
.
30.
Xu
,
J. Q.
,
Li
,
Q. H.
, and
Wang
,
N.
,
2011
, “
Existence and Stability of the Grazing Periodic Trajectory in a Two-Degree-of-Freedom Vibro-Impact System
,”
Appl. Math. Comput.
,
217
(
12
), pp.
5537
5546
.
31.
Liu
,
Y. B.
,
Wang
,
Q.
, and
Xu
,
H. D.
,
2017
, “
Bifurcations of Periodic Motion in a Three-Degree-of-Freedom Vibro-Impact System With Clearance
,”
Commun. Nonlinear Sci. Numer. Simul
,
48
, pp.
1
17
.
32.
Balachandran
,
B.
,
2003
, “
Dynamics of an Elastic Structure Excited by Harmonic and Aharmonic Impactor Motions
,”
J. Vib. Control
,
9
(
3–4
), pp.
265
279
.
33.
Long
,
X. H.
,
Lin
,
G.
, and
Balachandran
,
B.
,
2008
, “
Grazing Bifurcations in Elastic Structure Excited by Harmonic Impactor Motions
,”
Phys. D
,
237
(
8
), pp.
1129
1138
.
34.
Chakraborty
,
I.
, and
Balachandran
,
B.
,
2012
, “
Near-Grazing Dynamics of Base Excited Cantilevers With Nonlinear Tip Interactions
,”
Nonlinear Dyn.
,
70
(
2
), pp.
1297
1310
.
35.
Thota
,
P.
,
Zhao
,
X. P.
, and
Dankowicz
,
H.
,
2006
, “
Co-Dimension-Two Grazing Bifurcations in Single-Degree-of-Freedom Impact Oscillators
,”
ASME J. Comput. Nonlinear Dyn.
,
1
(
4
), pp.
328
335
.
36.
Nordmark
,
A. B.
,
1991
, “
Non-Periodic Motion Caused by Grazing Incidence in an Impact Oscillator
,”
J. Sound Vib.
,
145
(
2
), pp.
279
297
.
37.
Lenci
,
S.
, and
Rega
,
G.
,
2000
, “
Periodic Solutions and Bifurcations in an Impact Inverted Pendulum Under Impulsive Excitation
,”
Chaos Soliton. Fractals
,
11
(
15
), pp.
2453
2472
.
38.
Hu
,
H. Y.
,
2000
,
Applied Nonlinear Dynamics Theory
,
1st ed
,
Aviation Industrial Publishing House
,
Beijing, China
. (In Chinese)
39.
Kuznetsov
,
Y. A.
,
1998
,
Elements of Applied Bifurcation Theory
,
2nd ed.
,
Springer-Verlag
,
New York
.
40.
Wen
,
G. L.
,
2005
, “
Criterion to Identify Hopf Bifurcations in Maps of Arbitrary Dimension
,”
Phys. Rev. E
,
72
, p.
026201
.
You do not currently have access to this content.