Extensive studies have been done on the phenomenon of phase and anti-phase synchronization (APS) between one drive and one response systems. As well as, combination synchronization for chaotic and hyperchaotic systems without delay also has been investigated. Thus, this paper aims to introduce the concept of phase and anti-phase combination synchronization (PCS and APCS) between two drive and one response time delay systems, which are not studied in the literature as far as we know. The analysis of PCS and APCS are carried out using active control technique. An example is given to test the validity of the expressions of control forces to achieve the PCS and APCS of time delay systems. This example is between three different systems. When there is no control, the PCS does not occur where the phase difference is unbounded. The bounded phase difference appears when the control is applied which means that PCS is achieved. The special case which is the combination synchronization is studied as well.

References

References
1.
Rosenblum
,
M. G.
,
Pikovsky
,
A. S.
, and
Kurths
,
J.
,
1996
, “
Phase Synchronization of Chaotic Oscillators
,”
Phys. Rev. Lett.
,
76
(
11
), pp.
1804
1807
.
2.
Anishchenko
,
V. S.
,
Vadivasova
,
T. E.
,
Postnov
,
D. E.
, and
Safonova
,
M. A.
,
1992
, “
Synchronization of Chaos
,”
Int. J. Bifurcation Chaos
,
2
(
3
), pp.
633
644
.
3.
Tallon-Baudry
,
C.
,
Bertrand
,
O.
,
Delpuech
,
C.
, and
Pernier
,
J.
,
1996
, “
Stimulus Specificity of Phase-Locked and Non-Phase-Locked 40 Hz Visual Responses in Human
,”
J. Neurosci.
,
16
(
13
), pp.
4240
4249
.
4.
Wang
,
W.
,
Kiss
,
I. Z.
, and
Hudson
,
J. L.
,
2000
, “
Experiments on Arrays of Globally Coupled Chaotic Electrochemical Oscillators: Synchronization and Clustering
,”
Chaos
,
10
(
1
), pp.
248
256
.
5.
DeShazer
,
D. J.
,
Breban
,
R.
,
Ott
,
E.
, and
Roy
,
R.
,
2001
, “
Detecting Phase Synchronization in a Chaotic Laser Array
,”
Phys. Rev. Lett.
,
87
(
4
), p.
044101
.
6.
Rosa
,
E.
, Jr
.,
Pardo
,
W. B.
,
Ticos
,
C. M.
,
Walkenstein
,
J. A.
, and
Monti
,
M.
,
2000
, “
Phase Synchronization of Chaos in a Plasma Discharge Tube
,”
Int. J. Bifurcation. Chaos
,
10
(
11
), pp.
2551
2563
.
7.
Fell
,
J.
, and
Axmacher
,
N.
,
2011
, “
The Role of Phase Synchronization in Memory Processes
,”
Nat. Rev. Neurosci.
,
12
(
2
), pp.
105
118
.
8.
Baptista
,
M. S.
, and
Kurths
,
J.
,
2005
, “
Chaotic Channel
,”
Phys. Rev. E
,
72
(
4
), p.
045202
.
9.
Mormann
,
F.
,
Kreuz
,
T.
,
Andrzejak
,
R. G.
,
David
,
P.
,
Lehnertz
,
K.
, and
Elger
,
C. E.
,
2003
, “
Epileptic Seizures are Preceded by a Decrease in Synchronization
,”
Epilepsy Res.
,
53
(
3
), pp.
173
185
.
10.
Fell
,
J.
,
Klaver
,
P.
,
Elger
,
C. E.
, and
Fernández
,
G.
,
2002
, “
The Interaction of Rhinal Cortex and Hippocampus in Human Declarative Memory Formation
,”
Rev. Neurosci.
,
13
(
4
), pp.
299
312
.
11.
Boccaletti
,
S.
,
Kurths
,
J.
,
Osipov
,
G.
,
Valladares
,
D. L.
, and
Zhou
,
C. S.
,
2002
, “
The Synchronization of Chaotic Systems
,”
Phys. Rep.
,
366
(
1–2
), pp.
1
101
.
12.
Pikovsky
,
A.
,
Rosenblum
,
M.
, and
Kurths
,
J.
,
2003
,
Synchronization: A Universal Concept in Nonlinear Sciences
, Vol.
12
,
Cambridge University Press
, Cambridge, UK.
13.
Juan
,
M.
, and
Xing-yuan
,
W.
,
2007
, “
Nonlinear Observer Based Phase Synchronization of Chaotic Systems
,”
Phys. Lett. A
,
369
(
4
), pp.
294
298
.
14.
Yu
,
H.
, and
Liu
,
Y.
,
2003
, “
Chaotic Synchronization Based on Stability Criterion of Linear Systems
,”
Phys. Lett. A
,
314
(
4
), pp.
292
298
.
15.
Pecora
,
L. M.
, and
Carroll
,
T. L.
,
1991
, “
Driving Systems With Chaotic Signals
,”
Phys. Rev. A
,
44
(
4
), pp.
2374
2383
.
16.
Ho
,
M. C.
,
Hung
,
Y. C.
, and
Chou
,
C. H.
,
2002
, “
Phase and Anti-Phase Synchronization of Two Chaotic Systems by Using Active Control
,”
Phys. Lett. A
,
296
(
1
), pp.
43
48
.
17.
Mahmoud
,
G. M.
,
Mahmoud
,
E. E.
, and
Arafa
,
A. A.
,
2013
, “
On Projective Synchronization of Hyperchaotic Complex Nonlinear Systems Based on Passive Theory for Secure Communications
,”
Phys. Scr.
,
87
(
5
), p.
055002
.
18.
Lau
,
F. C. M.
, and
Tse
,
C. K.
,
2003
, “
Techniques for Non-Coherent Detection in Chaos-Based Digital Communication Systems
,”
Chaos-Based Digital Communication System
,
Springer
,
Berlin
.
19.
Rohde
,
G. K.
,
Nichols
,
J. M.
, and
Bucholtz
,
F.
,
2008
, “
Chaotic Signal Detection and Estimation Based on Attractor Sets: Applications to Secure Communications
,”
Chaos
,
18
(
1
), p.
013114
.
20.
Mahmoud
,
G. M.
,
Arafa
,
A. A.
,
Abed-Elhameed
,
T. M.
, and
Mahmoud
,
E. E.
,
2017
, “
Chaos Control of Integer and Fractional Orders of Chaotic Burke-Shaw System Using Time Delayed Feedback Control
,”
Chaos Solitons Fractals
,
104
, pp.
680
692
.
21.
Ghosh
,
D.
,
Grosu
,
I.
, and
Dana
,
S. K.
,
2012
, “
Design of Coupling for Synchronization in Time-Delayed Systems
,”
Chaos
,
22
(
3
), p.
033111
.
22.
Mahmoud
,
G. M.
,
Mahmoud
,
E. E.
, and
Arafa
,
A. A.
,
2015
, “
On Modified Time Delay Hyperchaotic Complex Lü System
,”
Nonlinear Dyn.
,
80
(
1–2
), pp.
855
869
.
23.
Banerjee
,
T.
,
Biswas
,
D.
, and
Sarkar
,
B. C.
,
2013
, “
Complete and Generalized Synchronization of Chaos and Hyperchaos in a Coupled First-Order Time-Delayed System
,”
Nonlinear Dyn.
,
71
(
1–2
), pp.
279
290
.
24.
Mahmoud
,
G. M.
,
Mahmoud
,
E. E.
, and
Arafa
,
A. A.
,
2018
, “
Synchronization of Time Delay Systems With Non-Diagonal Complex Scaling Functions
,”
Chaos Solitons Fractals
,
111
, pp.
86
95
.
25.
Ansari
,
S. P.
, and
Das
,
S.
,
2015
, “
Projective Synchronization of Time-Delayed Chaotic Systems With Unknown Parameters Using Adaptive Control Method
,”
Math. Methods App. Sci.
,
38
(
4
), pp.
726
737
.
26.
Sun
,
X.
,
Perc
,
M.
, and
Kurths
,
J.
,
2017
, “
Effects of Partial Time Delays on Phase Synchronization in Watts-Strogatz Small-World Neuronal Networks
,”
Chaos
,
27
(
5
), p.
053113
.
27.
Heil
,
T.
,
Fischer
,
I.
,
Elsäßer
,
W.
,
Krauskopf
,
B.
,
Green
,
K.
, and
Gavrielides
,
A.
,
2003
, “
Delay Dynamics of Semiconductor Lasers With Short External Cavities: Bifurcation Scenarios and Mechanism
,”
Phys. Rev. E
,
67
(
6
), p.
066214
.
28.
Kopell
,
N.
,
Ermentrout
,
G. B.
,
Whittington
,
M. A.
, and
Traub
,
R. D.
,
2000
, “
Gamma Rhythms and Beta Rhythms Have Different Synchronization Properties
,”
Proc. Natl. Acad. Sci.
,
97
(
4
), pp.
1867
1872
.
29.
Luo
,
R. Z.
,
Wang
,
Y. L.
, and
Deng
,
S. C.
,
2011
, “
Combination Synchronization of Three Classic Chaotic Systems Using Active Backstepping Design
,”
Chaos
,
21
(
4
), p.
e043114
.
30.
Wang
,
S. B.
,
Wang
,
X. Y.
,
Wang
,
X. Y.
, and
Zhou
,
Y. F.
,
2016
, “
Adaptive Generalized Combination Complex Synchronization of Uncertain Real and Complex Nonlinear Systems
,”
AIP Adv.
,
6
(
4
), p.
045011
.
31.
Sun
,
J.
,
Cui
,
G.
,
Wang
,
Y.
, and
Shen
,
Y.
,
2015
, “
Combination Complex Synchronization of Three Chaotic Complex Systems
,”
Nonlinear Dyn.
,
79
(
2
), pp.
953
965
.
32.
Mahmoud
,
G. M.
,
Ahmed
,
M. E.
, and
Abed-Elhameed
,
T. M.
,
2017
, “
On Fractional-Order Hyperchaotic Complex Systems and Their Generalized Function Projective Combination Synchronization
,”
Optik
,
130
, pp.
398
406
.
33.
Mahmoud
,
G. M.
,
Abed-Elhameed
,
T. M.
, and
Ahmed
,
M. E.
,
2016
, “
Generalization of Combination–Combination Synchronization of Chaotic n-Dimensional Fractional-Order Dynamical Systems
,”
Nonlinear Dyn.
,
83
(
4
), pp.
1885
1893
.
34.
Sun
,
J.
,
Jiang
,
S.
,
Cui
,
G.
, and
Wang
,
Y.
,
2016
, “
Dual Combination Synchronization of Six Chaotic Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
3
), p.
034501
.
35.
Sun
,
J.
,
Wang
,
Y.
,
Wang
,
Y.
, and
Shen
,
Y.
,
2016
, “
Finite-Time Synchronization Between Two Complex-Variable Chaotic Systems With Unknown Parameters Via Nonsingular Terminal Sliding Mode Control
,”
Nonlinear Dyn.
,
85
(
2
), pp.
1105
1117
.
36.
Zheng
,
S.
,
2016
, “
Synchronization Analysis of Time Delay Complex-Variable Chaotic Systems With Discontinuous Coupling
,”
J. Franklin Inst.
,
353
(
6
), pp.
1460
1477
.
37.
Sun
,
J.
,
Wu
,
Y.
,
Cui
,
G.
, and
Wang
,
Y.
,
2017
, “
Finite-Time Real Combination Synchronization of Three Complex-Variable Chaotic Systems With Unknown Parameters Via Sliding Mode Control
,”
Nonlinear Dyn.
,
88
(
3
), pp.
1677
1690
.
38.
Ghosh
,
D.
,
Chowdhury
,
R.
, and
Saha
,
P.
,
2008
, “
Multiple Delay Rössler System: Bifurcation and Chaos Control
,”
Chaos Solitons Fract.
,
35
(
3
), pp.
472
485
.
39.
Shaw
,
R.
,
1981
, “
Strange Attractors, Chaotic Behavior, and Information Flow
,”
Z. Naturforsch. A
,
36
(1), pp.
80
112
.
40.
Song
,
Y.
, and
Wei
,
J.
,
2004
, “
Bifurcation Analysis for Chen's System With Delayed Feedback and Its Application to Control of Chaos
,”
Chaos Solitons Fractals
,
22
(
1
), pp.
75
91
.
41.
Mahmoud
,
G. M.
, and
Mahmoud
,
E. E.
,
2010
, “
Phase and Antiphase Synchronization of Two Identical Hyperchaotic Complex Nonlinear Systems
,”
Nonlinear Dyn.
,
61
(
1–2
), pp.
141
152
.
42.
Mahmoud
,
E. E.
,
2013
, “
Modified Projective Phase Synchronization of Chaotic Complex Nonlinear Systems
,”
Math. Comput. Simul.
,
89
, pp.
69
85
.
43.
Gabor
,
D.
,
1946
, “
Theory of Communication
,”
J. IEE (London)
,
93
(
26
), pp.
429
457
.
You do not currently have access to this content.