The dissipative contact force model plays a key role in predicting the response of multibody mechanical systems. Contact-impact event can frequently take place in multibody systems and the impact pair is often affected by supporting forces which are treated as external spring forces. However, the external spring forces are ignored during the derivation process of existing dissipative contact force models. Considering the influences of external spring forces, the fact is discussed that the crucial issues, including relative velocity and energy loss, in modeling dissipative contact force are different compared to the same issues analyzed in existing literatures. These differences can result in obvious errors in describing the collision response in multibody systems. Thus, a comparative study is carried out for examining the performances of several popular dissipative contact force models in multibody dynamics. For this comparison, a method associated with Newton's method is proposed to calculate the contact force that meets the Strong's law of energy loss and this force is used as reference. The comparative results show that the models suitable for both hard and soft contact exhibit good accuracy when contact equivalent stiffness is far larger than external spring stiffness by two orders of magnitude. Conversely, these models can cause varying degree and obvious errors in contact force, number of collisions, etc., especially when the difference in stiffness is close to or less than one order of magnitude.

References

References
1.
Chau-Chin Changt
,
R. L.
, and
Huston
,
1995
, “
Computational Methods for Studying Impact in Multibody Systems
,”
Comput. Struct.
,
57
(
3
), pp.
421
425
.
2.
Flores
,
P.
,
Ambrósio, J.
,
Claro, J. C. P.
, and
Lankarani, H. M.
,
2008
,
Kinematics and Dynamics of Multibody Systems With Imperfect Joints: Models and Case Studies, Lecture Notes in Applied and Computational Mechanics
, Vol.
34
,
Springer
,
Berlin, Heidelberg
.
3.
Pereira
,
C. M.
,
Ramalho
,
A. L.
, and
Ambrósio
,
J. A.
,
2011
, “
A Critical Overview of Internal and External Cylinder Contact Force Models
,”
Nonlinear Dyn.
,
63
(
4
), pp.
681
697
.
4.
Alves
,
J.
,
Peixinho
,
N.
,
Silva
,
M. T. D.
,
Flores, P.
, and
Lankarani, H. M.
,
2015
, “
A Comparative Study of the Viscoelastic Constitutive Models for Frictionless Contact Interfaces in Solids
,”
Mech. Mach. Theory
,
85
, pp.
172
188
.
5.
Ravn
,
P.
,
1998
, “
A Continuous Analysis Method for Planar Multibody Systems With Joint Clearance
,”
Multibody Syst. Dyn.
,
2
, pp.
1
24
.
6.
Tian
,
Q.
,
Zhang
,
Y.
,
Chen
,
L.
, and
Flores
,
P.
,
2009
, “
Dynamics of Spatial Flexible Multibody Systems With Clearance and Lubricated Spherical Joints
,”
Comput. Struct.
,
87
(
13–14
), pp.
913
929
.
7.
Flores
,
P.
, and
Ambrósio
,
J.
,
2010
, “
On the Contact Detection for Contact-Impact Analysis in Multibody Systems
,”
Multibody Syst. Dyn.
,
24
(
1
), pp.
103
122
.
8.
Khulief
,
Y. A.
,
2013
, “
Modeling of Impact in Multibody Systems: An Overview
,”
ASME J. Comput. Nonlinear Dyn.
,
8
(
2
), p.
021012
.
9.
Shabana
,
A. A
,
1997
, “
Flexible Multibody Dynamics: Review of Past and Recent Developments
,”
Multibody Syst. Dyn.
,
1
(
2
), pp.
189
222
.
10.
Zhao
,
Y.
, and
Bai
,
Z.
,
2011
, “
Dynamics Analysis of Space Robot Manipulator With Joint Clearance
,”
Acta Astronaut.
,
68
(
7–8
), pp.
1147
1155
.
11.
Zheng
,
E.
,
Zhu
,
R.
,
Zhu
,
S.
, and
Lu, X.
,
2016
, “
A Study on Dynamics of Flexible Multi-Link Mechanism Including Joints With Clearance and Lubrication for Ultra-Precision Presses
,”
Nonlinear Dyn.
,
83
(
1–2
), pp.
137
159
.
12.
Erkaya
,
S.
,
Doğan
,
S.
, and
Ulus
,
Ş.
,
2015
, “
Effects of Joint Clearance on the Dynamics of a Partly Compliant Mechanism: Numerical and Experimental Studies
,”
Mech. Mach. Theory
,
88
, pp.
125
140
.
13.
Vuquoc
,
L.
,
Zhang
,
X.
, and
Lesburg
,
L.
,
2000
, “
A Normal Force-Displacement Model for Contacting Spheres Accounting for Plastic Deformation: Force-Driven Formulation
,”
ASME J. Appl. Mech.
,
67
(
2
), pp.
363
371
.
14.
Tian
,
Q.
,
Flores
,
P.
, and
Lankarani
,
H. M.
,
2018
, “
A Comprehensive Survey of the Analytical, Numerical and Experimental Methodologies for Dynamics of Multibody Mechanical Systems With Clearance or Imperfect Joints
,”
Mech. Mach. Theory
,
122
, pp.
1
57
.
15.
Pereira
,
C.
,
Ramalho
,
A.
, and
Ambrosio
,
J.
,
2014
, “
Applicability Domain of Internal Cylindrical Contact Force Models
,”
Mech. Mach. Theory
,
78
, pp.
141
157
.
16.
Uchida
,
T. K.
,
Sherman
,
M. A.
, and
Delp
,
S. L.
,
2015
, “
Making a Meaningful Impact: Modelling Simultaneous Frictional Collisions in Spatial Multibody Systems
,”
Proc. R. Soc. A
,
471
(
2177
), p.
20140859
.
17.
Masoudi
,
R.
, and
McPhee
,
J.
,
2016
, “
A Novel Micromechanical Model of Nonlinear Compression Hysteresis in Compliant Interfaces of Multibody Systems
,”
Multibody Syst. Dyn.
,
37
(
3
), pp.
325
343
.
18.
Marques
,
F.
,
Isaac
,
F.
,
Dourado
,
N.
, and
Flores
,
P.
,
2017
, “
An Enhanced Formulation to Model Spatial Revolute Joints With Radial and Axial Clearances
,”
Mech. Mach. Theory
,
116
, pp.
123
144
.
19.
Flores
,
P.
,
Machado
,
M.
,
Silva
,
M. T.
, and
Martins
,
J. M.
,
2011
, “
On the Continuous Contact Force Models for Soft Materials in Multibody Dynamics
,”
Multibody Syst. Dyn.
,
25
(
3
), pp.
357
375
.
20.
Hu
,
S.
, and
Guo
,
X.
,
2015
, “
A Dissipative Contact Force Model for Impact Analysis in Multibody Dynamics
,”
Multibody Syst. Dyn.
,
35
(
2
), pp.
131
151
.
21.
Lin
,
Y. C.
,
Haftka
,
R. T.
,
Queipo
,
N. V.
, and
Fregly
,
B. J.
,
2010
, “
Surrogate Articular Contact Models for Computationally Efficient Multibody Dynamic Simulations
,”
Medical Eng. Phys.
,
32
(
6
), pp.
584
594
.
22.
Malla
,
R. B.
, and
Vila
,
L. J.
,
2017
, “
Dynamic Impact Force in an Axial Member With Coupled Effects of Structural Vibration and Various Support Conditions
,”
Eng. Struct.
,
144
, pp.
210
224
.
23.
Khulief
,
Y. A.
, and
Shabana
,
A. A.
,
1987
, “
A Continuous Force Model for the Impact Analysis of Flexible Multibody Systems
,”
Mech. Mach. Theory
,
22
(
3
), pp.
213
224
.
24.
Hunt
,
K. H.
, and
Crossley
,
F. R. E.
,
1975
, “
Coefficient of Restitution Interpreted as Damping in Vibroimpact
,”
ASME J. Appl. Mech.
,
42
(
2
), pp.
440
445
.
25.
Lee
,
T. W.
, and
Wang
,
A. C.
,
1983
, “
On the Dynamics of Intermittent-Motion Mechanisms—Part 1: Dynamic Model and Response
,”
ASME J. Mech. Des.
,
105
(
3
), pp.
534
540
.
26.
Lankarani
,
H. M.
, and
Nikravesh
,
P. E.
,
1990
, “
A Contact Force Model With Hysteresis Damping for Impact Analysis of Multibody Systems
,”
ASME J. Appl. Mech.
,
112
(
3
), pp.
369
376
.
27.
Gonthier
,
Y.
,
Mcphee
,
J.
,
Lange
,
C.
, and
Piedboeuf, J. C.
,
2004
, “
A Regularized Contact Model With Asymmetric Damping and Dwell-Time Dependent Friction
,”
Multibody Syst. Dyn.
,
11
(
3
), pp.
209
233
.
28.
Zhang
,
Y.
, and
Sharf
,
I.
,
2004
, “
Compliant Force Modeling for Impact Analysis
,”
ASME
Paper No. DETC2004-57220
.
29.
Zhiying
,
Q.
, and
Qishao
,
L.
,
2006
, “
Analysis of Impact Process Based on Restitution Coefficient
,”
J. Dyn. Control
,
4
, pp.
294
298
.http://dlxykzxb.cnjournals.net/ch/reader/view_abstract.aspx?file_no=20060402&flag=1
30.
Gharib
,
M.
, and
Hurmuzlu
,
Y.
,
2012
, “
A New Contact Force Model for Low Coefficient of Restitution Impact
,”
ASME J. Appl. Mech
,
79
(
6
), p.
064506
.
31.
Flores
,
P.
,
Leine
,
R.
, and
Glocker
,
C.
,
2010
, “
Modeling and Analysis of Planar Rigid Multibody Systems With Translational Clearance Joints Based on the Non-Smooth Dynamics Approach
,”
Multibody Syst. Dyn.
,
23
(
2
), pp.
165
190
.
32.
Guo
,
Y.
, and
Parker
,
R. G.
,
2010
, “
Dynamic Modeling and Analysis of a Spur Planetary Gear Involving Tooth Wedging and Bearing Clearance Nonlinearity
,”
Eur. J. Mech. A/Solids
,
29
(
6
), pp.
1022
1033
.
33.
Erkaya
,
S.
,
2012
, “
Investigation of Joint Clearance Effects on Welding Robot Manipulators
,”
Rob. Comput.-Integr. Manuf.
,
28
(
4
), pp.
449
457
.
34.
Meng
,
Q.
,
Liu
,
F.
,
Fisher
,
J.
, and
Jin
,
Z.
,
2013
, “
Contact Mechanics and Lubrication Analyses of Ceramic-on-Metal Total Hip Replacements
,”
Tribol. Int.
,
63
, pp.
51
60
.
35.
Koshy
,
C. S.
,
Flores
,
P.
, and
Lankarani
,
H. M.
,
2013
, “
Study of the Effect of Contact Force Model on the Dynamic Response of Mechanical Systems With Dry Clearance Joints: Computational and Experimental Approaches
,”
Nonlinear Dyn.
,
73
(
1–2
), pp.
325
338
.
36.
Askari
,
E.
,
Flores
,
P.
,
Dabirrahmani
,
D.
, and
Appleyard
,
R.
,
2014
, “
Study of the Friction-Induced Vibration and Contact Mechanics of Artificial Hip Joints
,”
Tribol. Int.
,
70
, pp.
1
10
.
37.
Varedi
,
S. M.
,
Daniali
,
H. M.
,
Dardel
,
M.
, and
Fathi
,
A.
,
2015
, “
Optimal Dynamic Design of a Planar Slider-Crank Mechanism With a Joint Clearance
,”
Mech. Mach. Theory
,
86
, pp.
191
200
.
38.
Rahmanian
,
S.
, and
Ghazavi
,
M. R.
,
2015
, “
Bifurcation in Planar Slider–Crank Mechanism With Revolute Clearance Joint
,”
Mech. Mach. Theory
,
91
, pp.
86
101
.
39.
Li
,
Y. Y.
,
Chen
,
G. P.
,
Sun
,
D. Y.
,
Gao
,
Y.
, and
Wang
,
K.
,
2016
, “
Dynamic Analysis and Optimization Design of a Planar Slider–Crank Mechanism With Flexible Components and Two Clearance Joints
,”
Mech. Mach. Theory
,
99
, pp.
37
57
.
40.
Lai
,
X.
,
He
,
H.
,
Lai
,
Q.
,
Wang, C.
,
Yang, J.
,
Zhang, Y.
,
Fang, H.
, and
Liao, S.
,
2017
, “
Computational Prediction and Experimental Validation of Revolute Joint Clearance Wear in the Low-Velocity Planar Mechanism
,”
Mech. Syst. Signal Process.
,
85
, pp.
963
976
.
41.
Eritenel
,
T.
, and
Parker
,
R. G.
,
2012
, “
Three-Dimensional Nonlinear Vibration of Gear Pairs
,”
J. Sound Vib.
,
331
(
15
), pp.
3628
3648
.
42.
Jiang
,
H.
, and
Liu
,
F.
,
2016
, “
Dynamic Features of Three-Dimensional Helical Gears Under Sliding Friction With Tooth Breakage
,”
Eng. Failure Anal.
,
70
, pp.
305
322
.
43.
Wu
,
C.-Y.
,
Li
,
L.-Y.
, and
Thornton
,
C.
,
2005
, “
Energy Dissipation During Normal Impact of Elastic and Elastic–Plastic Spheres
,”
Int. J. Impact Eng.
,
32
(
1–4
), pp.
593
604
.
44.
Stronge
,
W. J.
,
1990
, “
Rigid Body Collisions With Friction
,”
Proc. R. Soc. London, Ser. A: Math. Phys. Sci.
,
431
(
1881
), pp.
169
181
.
45.
Gilardi
,
G.
, and
Sharf
,
I.
,
2002
, “
Literature Survey of Contact Dynamics Modelling
,”
Mech. Mach.
,
37
(
10
), pp.
1213
1239
.
46.
Pereira
,
C.
,
Ramalho
,
A.
, and
Ambrosio
,
J.
,
2015
, “
An Enhanced Cylindrical Contact Force Model
,”
Multibody Syst Dyn
,
35
(
3
), pp.
277
298
.
You do not currently have access to this content.