In this paper, we construct and analyze a Legendre spectral-collocation method for the numerical solution of distributed-order fractional initial value problems. We first introduce three-term recurrence relations for the fractional integrals of the Legendre polynomial. We then use the properties of the Caputo fractional derivative to reduce the problem into a distributed-order fractional integral equation. We apply the Legendre–Gauss quadrature formula to compute the distributed-order fractional integral and construct the collocation scheme. The convergence of the proposed method is discussed. Numerical results are provided to give insights into the convergence behavior of our method.

References

References
1.
Magin
,
R. L.
,
2004
, “
Fractional Calculus in Bioengineering—Part 1
,”
Crit. Rev. Biomed. Eng.
,
32
(
2
), pp.
1
104
.
2.
Baleanu
,
D.
,
Yusuf
,
A.
,
Aliyu
,
A. I.
, et al. .,
2018
, “
Time Fractional Third-Order Evolution Equation: Symmetry Analysis, Explicit Solutions, and Conservation Laws
,”
ASME J. Comput. Nonlinear Dyn.
,
13
(
2
), p.
021011
.
3.
Bhrawy
,
A. H.
, and
Zaky
,
M. A.
,
2015
, “
A Method Based on the Jacobi Tau Approximation for Solving Multi-Term Time–Space Fractional Partial Differential Equations
,”
J. Comput. Phys.
,
281
, pp.
876
895
.
4.
Deshmukh
,
V. S.
,
2015
, “
Computing Numerical Solutions of Delayed Fractional Differential Equations With Time Varying Coefficients
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
1
), p.
011004
.
5.
Li
,
C.
,
Zeng
,
F.
, and
Liu
,
F.
,
2012
, “
Spectral Approximations to the Fractional Integral and Derivative
,”
Fract. Calc. Appl. Anal.
,
15
(
3
), pp.
383
406
.
6.
Caputo
,
M.
,
1967
, “
Linear Models of Dissipation Whose q Is Almost Frequency Independent—II
,”
Geophys J. R. Astron. Soc.
,
13
(
5
), pp.
529
539
.
7.
Jiao
,
Z.
,
Chen
,
Y.
, and
Podlubny
,
I.
,
2012
,
Distributed-Order Dynamic Systems: Stability, Simulation, Applications and Perspectives
,
Springer
,
London
.
8.
Eab
,
C.
, and
Lim
,
S.
,
2011
, “
Fractional Langevin Equations of Distributed Order
,”
Phys. Rev. E.
,
83
(
3
), p.
031136
.
9.
Sandev
,
T.
,
Chechkin
,
A. V.
,
Korabel
,
N.
,
Kantz
,
H.
,
Sokolov
,
I. M.
, and
Metzler
,
R.
,
2015
, “
Distributed-Order Diffusion Equations and Multifractality: Models and Solutions
,”
Phys. Rev. E.
,
92
(
4
), p.
042117
.
10.
Zaky
,
M. A.
,
2018
, “
A Legendre Collocation Method for Distributed-Order Fractional Optimal Control Problems
,”
Nonlinear Dyn.
,
91
(
4
), pp.
2667
2681
.
11.
Duan
,
J.-S.
, and
Baleanu
,
D.
,
2015
, “
Steady Periodic Response for a Vibration System With Distributed Order Derivatives to Periodic Excitation
,”
J. Vib. Control
,
24
(
14
), pp.
3124
3131
.
12.
Ford
,
N. J.
, and
Morgado
,
M. L.
,
2012
, “
Distributed Order Equations as Boundary Value Problems
,”
Comput. Math. Appl.
,
64
(
10
), pp.
2973
2981
.
13.
Atanackovic
,
T.
,
Pilipovic
,
S.
, and
Zorica
,
D.
,
2009
, “
Existence and Calculation of the Solution to the Time Distributed Order Diffusion Equation
,”
Phys. Scr.
,
2009
(
T136
), p.
014012
.
14.
Bagley
,
R.
, and
Torvik
,
P.
,
2000
, “
On the Existence of the Order Domain and the Solution of Distributed Order Equations—Part I
,”
Int. J. Appl. Math.
,
2
(
7
), pp.
865
882
.https://www.researchgate.net/publication/306079170_On_the_Existence_of_the_Order_Domain_and_the_Solution_of_Distributed_Order_Equations_-_Part_I
15.
Li
,
Z.
,
Luchko
,
Y.
, and
Yamamoto
,
M.
,
2014
, “
Asymptotic Estimates of Solutions to Initial-Boundary-Value Problems for Distributed Order Time-Fractional Diffusion Equations
,”
Fract. Calc. Appl. Anal.
,
17
(
4
), pp.
1114
1136
.
16.
Katsikadelis
,
J. T.
,
2014
, “
Numerical Solution of Distributed Order Fractional Differential Equations
,”
J. Comput. Phys.
,
259
, pp.
11
22
.
17.
Diethelm
,
K.
, and
Ford
,
N. J.
,
2009
, “
Numerical Analysis for Distributed-Order Differential Equations
,”
J. Comput. Appl. Math.
,
225
(
1
), pp.
96
104
.
18.
Fernández-Anaya
,
G.
,
Nava-Antonio
,
G.
,
Jamous-Galante
,
J.
,
Muñoz-Vega
,
R.
, and
Hernández-Martínez
,
E.
,
2017
, “
Asymptotic Stability of Distributed Order Nonlinear Dynamical Systems
,”
Commun. Nonlinear Sci. Numer. Simul.
,
48
, pp.
541
549
.
19.
Caputo
,
M.
,
2011
, “
Distributed Order Differential Equations Modelling Dielectric Induction and Diffusion
,”
Fract. Calc. Appl. Anal.
,
4
, pp.
421
442
.
20.
Lorenzo
,
C. F.
, and
Hartley
,
T. T.
,
2002
, “
Mathematical Modeling of the Dynamics of Anomalous Migration Fields Within the Framework of the Model of Distributed Order
,”
Nonlinear Dyn.
,
29
, pp.
57
98
.
21.
Li
,
X.
, and
Wu
,
B.
,
2016
, “
A Numerical Method for Solving Distributed Order Diffusion Equations
,”
Appl. Math. Lett.
,
53
, pp.
92
99
.
22.
Abbaszadeh
,
M.
, and
Dehghan
,
M.
,
2017
, “
An Improved Meshless Method for Solving Two-Dimensional Distributed Order Time-Fractional Diffusion-Wave Equation With Error Estimate
,”
Numer. Algor.
,
75
(
1
), pp.
173
211
.
23.
Hu
,
X.
,
Liu
,
F.
,
Turner
,
I.
, and
Anh
,
V.
,
2016
, “
An Implicit Numerical Method of a New Time Distributed-Order and Two-Sided Space-Fractional Advection-Dispersion Equation
,”
Numer. Algor.
,
72
(
2
), pp.
393
407
.
24.
Bu
,
W.
,
Xiao
,
A.
, and
Zeng
,
W.
,
2017
, “
Finite Difference/Finite Element Methods for Distributed-Order Time Fractional Diffusion Equations
,”
J. Sci. Comput.
,
72
(
1
), pp.
422
441
.
25.
Du
,
R.
,
Hao
,
Z.-P.
, and
Sun
,
Z.-Z.
,
2016
, “
Lubich Second-Order Methods for Distributed-Order Time-Fractional Differential Equations With Smooth Solutions
,”
East Asian J. Appl. Math.
,
6
(
2
), pp.
131
151
.
26.
Gao
,
G.-h.
, and
Sun
,
Z.-Z.
,
2017
, “
Two Difference Schemes for Solving the One-Dimensional Time Distributed-Order Fractional Wave Equations
,”
Numer. Algor.
,
74
(
3
), pp.
675
697
.
27.
Pimenov
,
V. G.
,
Hendy
,
A. S.
, and
De Staelen
,
R. H.
,
2017
, “
On a Class of Non-Linear Delay Distributed Order Fractional Diffusion Equations
,”
J. Comput. Appl. Math.
,
318
, pp.
433
443
.
28.
Bhrawy
,
A.
, and
Zaky
,
M.
,
2017
, “
Numerical Simulation of Multi-Dimensional Distributed-Order Generalized Schrödinger Equations
,”
Nonlinear Dyn.
,
89
(
2
), pp.
1415
1432
.
29.
Zaky
,
M.
, and
Machado
,
J. T.
,
2017
, “
On the Formulation and Numerical Simulation of Distributed-Order Fractional Optimal Control Problems
,”
Commun. Nonlinear Sci. Numer. Simulat.
,
52
, pp.
177
189
.
30.
Kharazmi
,
E.
,
Zayernouri
,
M.
, and
Karniadakis
,
G. E.
,
2017
, “
Petrov–Galerkin and Spectral Collocation Methods for Distributed Order Differential Equations
,”
SIAM J. Sci. Comput.
,
39
(
3
), pp.
A1003
A1037
.
31.
Morgado
,
M. L.
,
Rebelo
,
M.
,
Ferras
,
L. L.
, and
Ford
,
N. J.
,
2017
, “
Numerical Solution for Diffusion Equations With Distributed Order in Time Using a Chebyshev Collocation Method
,”
Appl. Numer. Math.
,
114
, pp.
108
123
.
32.
Podlubny
,
I.
,
1999
,
Fractional Differential Equations
,
Academic Press
,
San Diego, CA
.
33.
Carnahan
,
B.
, and
Luther
,
H. A.
,
1969
,
Applied Numerical Methods
,
Wiley
,
New York
.
34.
Kreyszig
,
E.
,
1978
,
Introductory Functional Analysis With Applications
,
Wiley
,
London
.
35.
Canuto
,
C.
,
Quarteroni
,
A.
,
Hussaini
,
M. Y.
, and
Zang
,
T. A.
,
2006
,
Spectral Methods Fundamentals in Single Domains
,
Springer
Berlin
.
36.
Shen
,
J.
, and
Tang
,
T.
,
2006
,
Spectral and High-Order Methods With Applications
,
Science
,
Beijing, China
.
37.
Adams
,
R. A.
,
1975
,
Sobolev Spaces
,
Academic Press
,
New York
.
38.
Mashayekhi
,
S.
, and
Razzaghi
,
M.
,
2016
, “
Numerical Solution of Distributed Order Fractional Differential Equations by Hybrid Functions
,”
J. Comput. Phys.
,
315
, pp.
169
181
.
You do not currently have access to this content.