This paper focuses on the implementation of a Hamiltonian model of multi-unit hydropower systems (MUHSs). First, a nonlinear mathematical model of the MUHS is established considering the occurrence of water hammer during the transient process. From the point of view of the energy transmission and dissipation of the system, a novel Hamiltonian model of the MUHS is proposed. Moreover, numerical simulations are carried out to further investigate the effectiveness and consistency of the implemented model. Finally, a comparative analysis is performed to validate the proposed approach against existing methods. The results demonstrate that the proposed Hamiltonian function not only reflects the energy change but also describes the complex dynamic evolution of MUHSs in transient processes. It is also found that the transient dynamic behavior of the system is influenced by the coupled effect of common penstock and the interaction of basic system variables. This study provides theoretical basis for the safe and stable operation of hydropower stations during transient processes.

References

References
1.
Trivedi, C.
,
Gogstad, P. J.
, and
Dahlhaug, O. G.
, 2017, “
Investigation of the Unsteady Pressure Pulsations in the Prototype Francis Turbines During Load Variation and Startup
,”
J. Renew. Sustain. Ener.
,
9
(6), p. 064502.
2.
Wu
,
Q. Q.
,
Zhang
,
L. K.
, and
Ma
,
Z. Y.
,
2017
, “
A Model Establishment and Numerical Simulation of Dynamic Coupled Hydraulic-Mechanical-Electric-Structural System for Hydropower Station
,”
Nonlinear Dyn.
,
87
(
1
), pp.
459
474
.
3.
Egusquiza
,
E.
,
Valero
,
C.
,
Presas
,
A.
,
Huang
,
X. X.
,
Guardo
,
A.
, and
Seidel
,
U.
,
2016
, “
Analysis of the Dynamic Response of Pump-Turbine Impellers. Influence of the Rotor
,”
Mech. Syst. Signal Process.
,
68–69
, pp.
330
341
.
4.
Skjoldan
,
P. F.
, and
Bauchau
,
O. A.
,
2011
, “
Determination of Modal Parameters in Complex Nonlinear Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
6
(
3
), p.
031017
.
5.
Niu
,
W. J.
,
Feng
,
Z. K.
, and
Cheng
,
C. T.
,
2018
, “
Optimization of Variable-Head Hydropower System Operation Considering Power Shortage Aspect With Quadratic Programming and Successive Approximation
,”
Energy
,
143
, pp.
1020
1028
.
6.
Balkhair
,
K. S.
, and
Rahman
,
K. U.
,
2017
, “
Sustainable and Economical Small-Scale and Low-Head Hydropower Generation: A Promising Alternative Potential Solution for Energy Generation at Local and Regional Scale
,”
Appl. Energy
,
188
, pp.
378
391
.
7.
Razurel
,
P.
,
Gorla
,
L.
,
Tron
,
S.
,
Niayifar
,
A.
,
Crouzy
,
B.
, and
Perona
,
P.
,
2018
, “
Improving the Ecohydrological and Economic Efficiency of Small Hydropower Plants With Water Diversion
,”
Adv. Water Resour.
,
113
, pp.
249
259
.
8.
Karney
,
B. W.
, and
Simpson
,
A. R.
,
2007
, “
In-Line Check Valves for Water Hammer Control
,”
J. Hydraul. Res.
,
137
(
11
), pp.
1509
1521
.
9.
Li
,
H. H.
,
Chen
,
D. Y.
,
Zhang
,
H.
,
Wang
,
F. F.
, and
Ba
,
D. D.
,
2016
, “
Nonlinear Modeling and Dynamic Analysis of a Hydro-Turbine Governing System in the Process of Sudden Load Increase Transient
,”
Mech. Syst. Signal Process.
,
80
, pp.
414
428
.
10.
Laguna
,
A. J.
,
2015
, “
Modeling and Analysis of an Offshore Wind Turbine With Fluid Power Transmission for Centralized Electricity Generation
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
4
), p.
041002
.
11.
Xue
,
H. B.
,
Zhang
,
J. Y.
,
Wang
,
H.
, and
Jiang
,
B. S.
,
2018
, “
Robust Stability of Switched Interconnected Systems With Time-Varying Delays
,”
ASME J. Comput. Nonlinear Dyn.
,
13
(
2
), p.
021004
.
12.
Pavesi
,
G.
,
Cavazzini
,
G.
, and
Ardizzon
,
G.
,
2016
, “
Numerical Analysis of the Transient Behaviour of a Variable Speed Pump-Turbine During a Pumping Power Reduction Scenario
,”
Energies
,
9
(
7
), p.
534
.
13.
Adam
,
N. J.
,
De Cesare
,
G.
,
Nicolet
,
C.
,
Billeter
,
P.
,
Angermayr
,
A.
,
Valluy
,
B.
, and
Schleiss
,
A. J.
,
2018
, “
Design of a Throttled Surge Tank for Refurbishment by Increase of Installed Capacity at a High-Head Power Plant
,”
J. Hydraul. Eng. ASCE
,
144
(
2
).
14.
Trivedi
,
C.
,
2018
, “
Investigations of Compressible Turbulent Flow in a High-Head Francis Turbine
,”
ASME J. Fluids Eng.
,
140
(
1
), p.
011101
.
15.
Xu
,
B. B.
,
Chen
,
D. Y.
,
Zhang
,
H.
, and
Zhou
,
R.
,
2015
, “
Dynamic Analysis and Modeling of a Novel Fractional-Order Hydro-Turbine-Generator Unit
,”
Nonlinear Dyn.
,
81
(
3
), pp.
1263
1274
.
16.
Chen
,
Z.
,
Singh
,
P. M.
, and
Choi
,
Y. D.
,
2017
, “
Suppression of Unsteady Swirl Flow in the Draft Tube of a Francis Hydro Turbine Model Using J-Groove
,”
J. Mech. Sci. Technol.
,
31
(
12
), pp.
5813
5820
.
17.
Meijaard
,
J. P.
,
2014
, “
Fluid-Conveying Flexible Pipes Modeled by Large-Deflection Finite Elements in Multibody Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(
1
), p.
011008
.
18.
Triki
,
A.
,
2017
, “
Water-Hammer Control in Pressurized-Pipe Flow Using a Branched Polymeric Penstock
,”
J. Pipel. Syst. Eng. Pract.
,
8
(
4
), p. 04017024.https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29PS.1949-1204.0000277
19.
Yuan
,
X. H.
,
Chen
,
Z. H.
,
Yuan
,
Y. B.
,
Huang
,
Y. H.
,
Li
,
X. S.
, and
Li
,
W. W.
,
2016
, “
Sliding Mode Controller of Hydraulic Generator Regulating System Based on the Input/Output Feedback Linearization Method
,”
Math. Comput. Simul.
,
119
, pp.
18
34
.
20.
Aradag
,
S.
,
Akin
,
H.
, and
Celebioglu
,
K.
,
2017
, “
CFD Based Design of a 4.3 MW Francis Turbine for Improved Performance at Design and Off-Design Conditions
,”
J. Mech. Sci. Technol.
,
31
(
10
), pp.
5041
5049
.
21.
Demirel
,
G.
,
Acar
,
E.
,
Celebioglu
,
K.
, and
Aradag
,
S.
,
2017
, “
CFD-Driven Surrogate-Based Multi-Objective Shape Optimization of an Elbow Type Draft Tube
,”
Int. J. Hydrogen Energy
,
42
(
28
), pp.
17601
17610
.
22.
Zhou
,
L. J.
,
Liu
,
M.
,
Wang
,
Z. W.
,
Liu
,
D. M.
, and
Zhao
,
Y. Z.
,
2017
, “
Numerical Simulation of the Blade Channel Vortices in a Francis Turbine Runner
,”
Eng. Comput.
,
34
(
2
), pp.
364
376
.
23.
Teran
,
L. A.
,
Larrahondo
,
F. J.
, and
Rodriguez
,
S. A.
,
2016
, “
Performance Improvement of a 500-kW Francis Turbine Based on CFD
,”
Renewable Energy
,
96
, pp.
977
992
.
24.
Antali
,
M.
,
Takacs
,
D.
, and
Stepan
,
G.
,
2018
, “
Experimental Fitting of Rotor Models by Using a Special Three-Node Beam Element
,”
ASME J. Comput. Nonlinear Dyn.
,
13
(
2
), p.
021009
.
25.
Ebrahimi
,
R.
,
Ghayour
,
M.
, and
Khanlo
,
H. M.
,
2017
, “
Chaotic Vibration Analysis of a Coaxial Rotor System in Active Magnetic Bearings and Contact With Auxiliary Bearings
,”
ASME J. Comput. Nonlinear Dyn.
,
12
(
3
), p.
031012
.
26.
An
,
X. L.
,
Pan
,
L. P.
, and
Zhang
,
F.
,
2017
, “
Analysis of Hydropower Unit Vibration Signals Based on Variational Mode Decomposition
,”
J. Vib. Control
,
23
(
12
), pp.
1938
1953
.
27.
Xu
,
B. B.
,
Yan
,
D. L.
,
Chen
,
D. Y.
,
Gao
,
X.
, and
Wu
,
C. Z.
,
2017
, “
Sensitivity Analysis of a Pelton Hydropower Station Based on a Novel Approach of Turbine Torque
,”
Energy Convers. Manage
,
148
, pp.
785
800
.
28.
Nasselqvist
,
M.
,
Gustavsson
,
R.
, and
Aidanpaa
,
J. O.
,
2013
, “
A Methodology for Protective Vibration Monitoring of Hydropower Units Based on the Mechanical Properties
,”
ASME J. Dyn. Syst. Meas. Control
,
135
(
4
), p.
410071
.
29.
Zhang
,
L. K.
,
Ma
,
Z. Y.
,
Wu
,
Q. Q.
, and
Wang
,
X. N.
,
2016
, “
Vibration Analysis of Coupled Bending-Torsional Rotor-Bearing System for Hydraulic Generating Set With Rub-Impact Under Electromagnetic Excitation
,”
Arch. Appl. Mech.
,
86
(
9
), pp.
1665
1679
.
30.
Agudelo
,
C.
,
Anglada
,
F. M.
,
Cucarella
,
E. Q.
, and
Moreno
,
E. G.
,
2013
, “
Integration of Techniques for Early Fault Detection and Diagnosis for Improving Process Safety: Application to a Fluid Catalytic Cracking Refinery Process
,”
J. Loss. Prev. Process Ind.
,
26
(
4
), pp.
660
665
.
31.
Jong
,
C. G.
, and
Leu
,
S. S.
,
2013
, “
Bayesian-Network-Based Hydro-Power Fault Diagnosis System Development by Fault Tree Transformation
,”
J. Mar. Sci. Technol.-Taiwan
,
21
(
4
), pp.
367
379
.
32.
Xia
,
X.
,
Ni
,
W.
, and
Sang
,
Y. J.
,
2017
, “
A Novel Analysis Method for Fault Diagnosis of Hydro-Turbine Governing System
,”
Proc. Inst. Mech. Eng., Part O
,
231
(
2
), pp.
164
171
.
33.
Kang
,
J.
,
Zhang
,
L. B.
, and
Liang
,
W.
,
2015
, “
Fault Diagnosis of Pipeline and Pump Unit Systems Using Status Coupling Analysis
,”
J. Loss. Prev. Process Ind.
,
33
, pp.
70
76
.
34.
Naz
,
R.
,
2016
, “
The Applications of the Partial Hamiltonian Approach to Mechanics and Other Areas
,”
Int. J. Nonlinear Mech.
,
86
, pp.
1
6
.
35.
Elyseeva
,
J.
,
2016
, “
Comparison Theorems for Conjoined Bases of Linear Hamiltonian Differential Systems and the Comparative Index
,”
J. Math. Anal. Appl.
,
444
(
2
), pp.
1260
1273
.
36.
Zeng
,
Y.
,
Zhang
,
L. X.
,
Guo
,
Y. K.
, and
Qian
,
J.
,
2015
, “
Hamiltonian Stabilization Additional L-2 Adaptive Control and Its Application to Hydro Turbine Generating Sets
,”
Int. J. Control Autom. Syst.
,
13
(
4
), pp.
867
876
.
37.
Wang
,
Y. Z.
, and
Ge
,
S. S.
,
2008
, “
Augmented Hamiltonian Formulation and Energy-Based Control Design of Uncertain Mechanical Systems
,”
IEEE Trans. Control Syst. Technol.
,
16
(
2
), pp.
202
213
.
38.
Sun
,
Y. Z.
,
Zhang
,
X.
,
Shen
,
T. L.
,
Jiao
,
X. H.
, and
He
,
S.
,
2005
, “
Damping Coefficient Compensation of Generator by Novel Nonlinear Excitation Control
,”
International Power Engineering Conference
(
IPEC
), Singapore, Nov. 29–Dec. 2, pp.
740
746
.
39.
Xu
,
B. B.
,
Wang
,
F. F.
,
Chen
,
D. Y.
, and
Zhang
,
H.
,
2016
, “
Hamiltonian Modeling of Multi-Hydro-Turbine Governing Systems With Sharing Common Penstock and Dynamic Analyses Under Shock Load
,”
Energy Convers. Manag.
,
108
, pp.
478
487
.
40.
Shen
,
Z. Y.
,
1998
,
Hydraulic Turbine Regulation
,
Water Power Press
,
Beijing, China
.
41.
Ling
,
D. J.
, and
Tao
,
Y.
,
2006
, “
An Analysis of the Hopf Bifurcation in a Hydroturbine Governing System With Saturation
,”
IEEE Trans. Energy Convers.
,
21
(
2
), pp.
512
515
.
42.
Chang
,
J. S.
,
2005
,
Transients of Hydraulic Machine Installations
,
Higher Education Press
,
Beijing, China
.
43.
Li
,
H. H.
,
Chen
,
D. Y.
,
Zhang
,
H.
,
Wu
,
C. Z.
, and
Wang
,
X. Y.
,
2017
, “
Hamiltonian Analysis of a Hydro-Energy Generation System in the Transient of Sudden Load Increasing
,”
Appl. Energy
,
185
, pp.
244
253
.
You do not currently have access to this content.