A family of Runge–Kutta (RK) methods designed for better stability is proposed. Authors have optimized the stability of RK method by increasing the stability region by trading some of the higher order terms in the Taylor series. For flow involving shocks, compromising a few higher order terms will not affect convergence rate that is justified with an example. Though this kind of analysis began about three decades ago, most of the papers dealt with classical optimization and ended up in relatively nonoptimal values. Here, authors have overcome that by using evolutionary algorithm (EA), the result is refined using multisection method (MSM). The schemes designed based on this procedure have better stability than the classical RK methods, strong stability RK methods (SSPRK), and low dispersive and dissipative RK methods (LDDRK) of the same number of stages. Authors have tested the schemes on a variety of test cases and found some significant improvement.

References

References
1.
Butcher
,
J. C.
,
2016
,
Numerical Methods for Ordinary Differential Equations
,
Wiley
, Hoboken, NJ.
2.
Zhao
,
S.
, and
Wei
,
G.-W.
,
2014
, “
A Unified Discontinuous Galerkin Framework for Time Integration
,”
Math. Methods Appl. Sci.
,
37
(
7
), pp.
1042
1071
.
3.
Hirsch
,
C.
,
2007
,
Numerical Computation of Internal and External Flows: The Fundamentals of Computational Fluid Dynamics
,
Butterworth-Heinemann
, Burlington, MA.
4.
Masatsuka
,
K.
,
2013
,
I Do like CFD
, 2nd ed., Vol.
1
,
Katate Masatsuka, Lulu
, VA.
5.
Calvo
,
M.
,
Franco
,
J.
, and
Rández
,
L.
,
2003
, “
Minimum Storage Runge-Kutta Schemes for Computational Acoustics
,”
Comput. Math. Appl.
,
45
(
1–3
), pp.
535
545
.
6.
Runge
,
C.
,
1895
, “
Über Die Numerische Auflösung Von Differentialgleichungen
,”
Math. Ann.
,
46
(
2
), pp.
167
178
.
7.
Fehlberg
,
E.
,
1970
, “
Klassische Runge-Kutta-Formeln Vierter Und Niedrigerer Ordnung Mit Schrittweiten-Kontrolle Und Ihre Anwendung Auf Waermeleitungsprobleme
,”
Computing
,
6
(
1–2
), pp.
61
71
.
8.
Dormand
,
J. R.
, and
Prince
,
P. J.
,
1980
, “
A Family of Embedded Runge-Kutta Formulae
,”
J. Comput. Appl Math.
,
6
(
1
), pp.
19
26
.
9.
Shampine
,
L. F.
, and
Reichelt
,
M. W.
,
1997
, “
The Matlab ODE Suite
,”
SIAM J. Sci. Comput.
,
18
(
1
), pp.
1
22
.
10.
Zhong
,
X.
,
1996
, “
Additive Semi-Implicit Runge–Kutta Methods for Computing High-Speed Nonequilibrium Reactive Flows
,”
J. Comput. Phys.
,
128
(
1
), pp.
19
31
.
11.
Pareschi
,
L.
, and
Russo
,
G.
,
2005
, “
Implicit-Explicit Runge-Kutta Schemes and Applications to Hyperbolic Systems With Relaxation
,”
J. Sci. Comput.
,
25
(
1–2
), pp.
129
155
.
12.
Williamson
,
J.
,
1980
, “
Low-Storage Runge-Kutta Schemes
,”
J. Comput. Phys.
,
35
(
1
), pp.
48
56
.
13.
Carpenter
,
M. H.
, and
Kennedy
,
C. A.
,
1994
, “
Fourth-Order 2N-Storage Runge-Kutta Schemes
,” National Aeronautics and Space Administration, Langley Research Center, Hampton, VA, Report No. NASA-TM-109112.
14.
Hu
,
F.
,
Hussaini
,
M.
, and
Manthey
,
J.
,
1996
, “
Low-Dissipation and Low-Dispersion Runge–Kutta Schemes for Computational Acoustics
,”
J. Comput. Phys.
,
124
(
1
), pp.
177
191
.
15.
Verwer
,
J. G.
,
1996
, “
Explicit Runge-Kutta Methods for Parabolic Partial Differential Equations
,”
Appl. Numer. Math.
,
22
(
1–3
), pp.
359
379
.
16.
Cockburn
,
B.
,
Lin
,
S.-Y.
, and
Shu
,
C.-W.
,
1989
, “
Tvb Runge-Kutta Local Projection Discontinuous Galerkin Finite Element Method for Conservation Laws Iii: One-Dimensional Systems
,”
J. Comput. Phys.
,
84
(
1
), pp.
90
113
.
17.
Ketcheson
,
D. I.
,
2008
, “
Highly Efficient Strong Stability-Preserving Runge-Kutta Methods With Low-Storage Implementations
,”
SIAM J. Sci. Comput.
,
30
(
4
), pp.
2113
2136
.
18.
Bogey
,
C.
, and
Bailly
,
C.
,
2004
, “
A Family of Low Dispersive and Low Dissipative Explicit Schemes for Flow and Noise Computations
,”
J. Comput. Phys.
,
194
(
1
), pp.
194
214
.
19.
Appadu
,
A. R.
,
2014
, “
Optimized Low Dispersion and Low Dissipation Runge-Kutta Algorithms in Computational Aeroacoustics
,”
Appl. Math
,
8
(
1
), pp.
57
68
.
20.
Udwadia
,
F. E.
, and
Farahani
,
A.
,
2008
, “
Accelerated Runge-Kutta Methods
,”
Discrete Dyn. Nat. Soc.
,
2008
, p. 790619.
21.
Phohomsiri
,
P.
, and
Udwadia
,
F. E.
,
2004
, “
Acceleration of Runge-Kutta Integration Schemes
,”
Discrete Dyn. Nat. Soc.
,
2
, pp.
307
314
.
22.
Rabiei
,
F.
, and
Ismail
,
F.
,
2012
, “
Fifth-Order Improved Runge-Kutta Method for Solving Ordinary Differential Equation
,”
Aust. J. Basic Appl. Sci.
,
6
(
3
), pp.
97
105
.https://www.researchgate.net/publication/286203373_Fifth-order_improved_Runge-Kutta_method_with_reduced_number_of_function_evaluations
23.
Neelan
,
A. G.
, and
Nair
,
M. T.
,
2016
, “
Optimized Dispersion Relation Schemes for Spatial and Temporal Discretization
,”
International Conference on Trends in Technology and Engineering (ICTTE'16)
, Coimbatore, India, Mar. 25–26, pp.
4
7
.
24.
Rajpoot
,
M. K.
,
Sengupta
,
T. K.
, and
Dutt
,
P. K.
,
2010
, “
Optimal Time Advancing Dispersion Relation Preserving Schemes
,”
J. Comput. Phys.
,
229
(
10
), pp.
3623
3651
.
25.
Denaro
,
F.
,
2005
, “
Time-Accurate Intermediate Boundary Conditions for Large Eddy Simulations Based on Projection Methods
,”
Int. J. Numer. Methods Fluids
,
48
(
8
), pp.
869
908
.
26.
Neelan
,
A. G.
,
Mandal
,
A.
, and
De
,
A.
,
2017
, “
Simulation of Unsteady Wall-Jet in a Confined Geometry and Identification of Coherent Structures Using Proper Orthogonal Decomposition
,”
Fluid Mechanics and Fluid Power–Contemporary Research
, A. K. Saha, D. Das, R. Srivastava, P. K. Panigrahi, and K. Muralidhar, eds.,
Springer
, New Delhi, India, pp.
713
721
.
27.
Tai
,
C.-H.
,
Sheu
,
J.-H.
, and
Van Leer
,
B.
,
1995
, “
Optimal Multistage Schemes for Euler Equations With Residual Smoothing
,”
AIAA J.
,
33
(
6
), pp.
1008
1016
.
28.
Hoffmann
,
K.
, and
Chiang
,
S.
,
2000
,
Computational Fluid Dynamics
, Vol. 2,
In Computational Fluid Dynamics. Engineering Education System
, Wichita, KS.
29.
Neelan
,
A. G.
, and
Nair
,
M. T.
,
2016
, “
Stability Preserving Runge–Kutta Method Using Genetic Algorithm
,”
Sixth International Congress on Computational Mechanics and Simulation
, Mumbai, India, June 27–July 1, pp.
925
928
.
30.
Kinnmark
,
I. P.
, and
Gray
,
W. G.
,
1984
, “
One Step Integration Methods of Third-Fourth-Order Accuracy With Large Hyperbolic Stability Limits
,”
Math. Comput. Simul.
,
26
(
3
), pp.
181
188
.
31.
Stanescu
,
D.
, and
Habashi
,
W.
,
1998
, “
2n-Storage Low Dissipation and Dispersion Runge-Kutta Schemes for Computational Acoustics
,”
J. Comput. Phys.
,
143
(
2
), pp.
674
681
.
32.
Mead
,
J.
, and
Renaut
,
R.
,
1999
, “
Optimal Runge–Kutta Methods for First-Order Pseudospectral Operators
,”
J. Comput. Phys.
,
152
(
1
), pp.
404
419
.
33.
Van der Houwen
,
P.
,
1996
, “
The Development of Runge-Kutta Methods for Partial Differential Equations
,”
Appl. Numer. Math.
,
20
(
3
), pp.
261
272
.
34.
Sengupta
,
T. K.
,
Sengupta
,
A.
, and
Saurabh
,
K.
,
2017
, “
Global Spectral Analysis of Multi-Level Time Integration Schemes: Numerical Properties for Error Analysis
,”
Appl. Math. Comput.
,
304
, pp.
41
57
.
35.
Gottlieb
,
S.
, and
Gottlieb
,
L.-A. J.
,
2003
, “
Strong Stability Preserving Properties of Runge–Kutta Time Discretization Methods for Linear Constant Coefficient Operators
,”
J. Sci. Comput.
,
18
(
1
), pp.
83
109
.
36.
Toro
,
E. F.
,
1999
,
Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction
, Applied Mechanics: Researchers and Students, Springer, London.
37.
Godunov
,
S. K.
,
1959
, “
A Difference Method for Numerical Calculation of Discontinuous Solutions of the Equations of Hydrodynamics
,”
Matematicheskii Sb.
,
89
(
3
), pp.
271
306
.
38.
Lax
,
P. D.
, and
Richtmyer
,
R. D.
,
1956
, “
Survey of the Stability of Linear Finite Difference Equations
,”
Commun. Pure Appl. Math.
,
9
(
2
), pp.
267
293
.
39.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: Nsga-II
,”
IEEE Trans Evolut. Comput.
,
6
(
2
), pp.
182
197
.
40.
Lipowski
,
A.
, and
Lipowska
,
D.
,
2012
, “
Roulette-Wheel Selection via Stochastic Acceptance
,”
Phys. A: Stat. Mech. Appl.
,
391
(
6
), pp.
2193
2196
.
41.
Baluja
,
S.
, and
Caruana
,
R.
,
1995
, “
Removing the Genetics From the Standard Genetic Algorithm
,”
12th International Conference on Machine Learning
, Tahoe City, CA, July 9–12, pp.
38
46
.
42.
Gottlieb
,
S.
, and
Shu
,
C.-W.
,
1998
, “
Total Variation Diminishing Runge-Kutta Schemes
,”
Math. Comput. Am. Math. Soc.
,
67
(
221
), pp.
73
85
.
43.
Tselios
,
K.
, and
Simos
,
T. E.
,
2005
, “
Runge–Kutta Methods With Minimal Dispersion and Dissipation for Problems Arising From Computational Acoustics
,”
J. Comput. Appl. Math.
,
175
(
1
), pp.
173
181
.
44.
Sod
,
G. A.
,
1978
, “
A Survey of Several Finite Difference Methods for Systems of Nonlinear Hyperbolic Conservation Laws
,”
J. Comput. Phys.
,
27
(
1
), pp.
1
31
.
45.
Blazek
,
J.
,
2015
,
Computational Fluid Dynamics: Principles and Applications
, No. v. 1 in Computational Fluid Dynamics: Principles and Applications,
Butterworth-Heinemann
, Elsevier, Kidlington.
46.
Johnsen
,
E.
, and
Colonius
,
T.
,
2006
, “
Implementation of Weno Schemes in Compressible Multicomponent Flow Problems
,”
J. Comput. Phys.
,
219
(
2
), pp.
715
732
.
47.
Roe
,
P. L.
,
1981
, “
Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes
,”
J. Comput. Phys.
,
43
(
2
), pp.
357
372
.
48.
Balsara
,
D. S.
, and
Shu
,
C.-W.
,
2000
, “
Monotonicity Preserving Weighted Essentially Non-Oscillatory Schemes With Increasingly High Order of Accuracy
,”
J. Comput. Phys.
,
160
(
2
), pp.
405
452
.
49.
Martín
,
M. P.
,
Taylor
,
E. M.
,
Wu
,
M.
, and
Weirs
,
V. G.
,
2006
, “
A Bandwidth-Optimized Weno Scheme for the Effective Direct Numerical Simulation of Compressible Turbulence
,”
J. Comput. Phys.
,
220
(
1
), pp.
270
289
.
50.
Harten
,
A.
,
1983
, “
High Resolution Schemes for Hyperbolic Conservation Laws
,”
J. Comput. Phys.
,
49
(
3
), pp.
357
393
.
You do not currently have access to this content.