The forced vibration of gyroscopic continua is investigated by taking the pipes conveying fluid as an example. The nonlinear normal modes and a numerical iterative approach are used to perform numerical response analysis. The nonlinear nonautonomous governing equations are transformed into a set of pseudo-autonomous ones by using the harmonic balance method. Based on the pseudo-autonomous system, the nonlinear normal modes are constructed by the invariant manifold method on the state space and substituted back into the original discrete equations. By repeating the above mentioned steps, the dynamic responses can be numerically obtained asymptotically using such iterative approach. Quadrature phase difference between the general coordinates is verified for the gyroscopic system and traveling waves instead of standing waves are found in the time-domain complex modal analysis.

References

1.
Yang
,
X.-D.
,
Chen
,
L.-Q.
, and
Zu
,
J. W.
,
2011
, “
Vibrations and Stability of an Axially Moving Rectangular Composite Plate
,”
ASME J. Appl. Mech.
,
78
(
1
), p.
011018
.
2.
Hosseini
,
S. A. A.
, and
Khadem
,
S. E.
,
2009
, “
Free Vibrations Analysis of a Rotating Shaft With Nonlinearities in Curvature and Inertia
,”
Mech. Mach. Theory
,
44
(
1
), pp.
272
288
.
3.
Lang
,
G. F.
,
2012
, “
Matrix Madness and Complex Confusion… A Review of Complex Modes From Multiple Viewpoints
,”
Sound Vib.
,
46
(
11
), pp.
8
12
.
4.
Yang
,
X. D.
,
Yang
,
S.
,
Qian
,
Y. J.
,
Zhang
,
W.
, and
Melnik
,
R. V. N.
,
2016
, “
Modal Analysis of the Gyroscopic Continua: Comparison of Continuous and Discretized Models
,”
ASME J. Appl. Mech.
,
83
(
8
), p.
084502
.
5.
Alati
,
N.
,
Failla
,
G.
, and
Santini
,
A.
,
2014
, “
Complex Modal Analysis of Rods With Viscous Damping Devices
,”
J. Sound Vib.
,
333
(
7
), pp.
2130
2163
.
6.
Xing
,
X.
, and
Feeny
,
B. F.
,
2015
, “
Complex Modal Analysis of a Nonmodally Damped Continuous Beam
,”
ASME J. Vib. Acoust.
,
137
(
4
), p.
041006
.
7.
Kerschen
,
G.
,
Shaw
,
S. W.
,
Touzé
,
C.
,
Gendelman
,
O. V.
,
Cochelin
,
B.
, and
Vakakis
,
A. F.
,
2014
,
Modal Analysis of Nonlinear Mechanical Systems
,
Springer
,
Vienna, Austria
.
8.
Renson
,
L.
,
Kerschen
,
G.
, and
Cochelin
,
B.
,
2016
, “
Numerical Computation of Nonlinear Normal Modes in Mechanical Engineering
,”
J. Sound Vib.
,
364
, pp.
177
206
.
9.
Boudaoud
,
H.
,
Belouettar
,
S.
,
Daya
,
E. M.
, and
Ferry
,
M. P.
,
2009
, “
A Numerical Method for Nonlinear Complex Modes With Application to Active-Passive Damped Sandwich Structures
,”
Eng. Struct.
,
31
(
2
), pp.
284
291
.
10.
Laxalde
,
D.
, and
Thouverez
,
F.
,
2009
, “
Complex Non-Linear Modal Analysis for Mechanical Systems: Application to Turbomachinery Bladings With Friction Interfaces
,”
J. Sound Vib.
,
322
(
4–5
), pp.
1009
1025
.
11.
Chen
,
S. H.
,
Huang
,
J. L.
, and
Sze
,
K. Y.
,
2007
, “
Multidimensional Lindstedt-Poincaré Method for Nonlinear Vibration of Axially Moving Beams
,”
J. Sound Vib.
,
306
(
1–2
), pp.
1
11
.
12.
Liang
,
F.
, and
Wen
,
B. C.
,
2011
, “
Forced Vibrations With Internal Resonance of a Pipe Conveying Fluid Under External Periodic Excitation
,”
Acta Mech. Solida Sin.
,
24
(
6
), pp.
477
483
.
13.
Shaw
,
S. W.
, and
Pierre
,
C.
,
1993
, “
Normal Modes for Non-Linear Vibratory Systems
,”
J. Sound Vib.
,
164
(
1
), pp.
85
124
.
14.
Avramov
,
K. V.
,
2008
, “
Analysis of Forced Vibrations by Nonlinear Modes
,”
Nonlinear Dyn.
,
53
(
1
), pp.
117
127
.
15.
Holmes
,
P. J.
,
1977
, “
Bifurcations to Divergence and Flutter in Flow-Induced Oscillations: A Finite Dimensional Analysis
,”
J. Sound Vib.
,
53
(
4
), pp.
471
503
.
16.
Paїdoussis
,
M. P.
,
2014
,
Fluid-Structure Interactions: Slender Structures and Axial Flow
, 2nd ed., Vol.
1
,
Academic Press
,
London
.
17.
Paїdoussis
,
M. P.
, and
Issid
,
N. T.
,
1974
, “
Dynamic Stability of Pipes Conveying Fluid
,”
J. Sound Vib.
,
33
(
3
), pp.
267
294
.
18.
Paїdoussis
,
M. P.
, and
Issid
,
N. T.
,
1976
, “
Experiments on Parametric Resonance of Pipes Containing Pulsatile Flow
,”
ASME J. Appl. Mech.
,
43
(
2
), pp.
198
202
.
19.
Vakakis
,
A. F.
,
Manevitch
,
L. I.
,
Mikhlin
,
Y. V.
,
Pilipchuk
,
V. N.
, and
Zevin
,
A. A.
,
1996
,
Normal Modes and Localization in Nonlinear Systems
,
Wiley
,
New York
.
20.
Avramov
,
K. V.
, and
Mikhlin
,
Y. V.
,
2006
, “
Snap-Through Truss as an Absorber of Forced Oscillations
,”
J. Sound Vib.
,
290
(
3–5
), pp.
705
722
.
You do not currently have access to this content.