The forced vibration of gyroscopic continua is investigated by taking the pipes conveying fluid as an example. The nonlinear normal modes and a numerical iterative approach are used to perform numerical response analysis. The nonlinear nonautonomous governing equations are transformed into a set of pseudo-autonomous ones by using the harmonic balance method. Based on the pseudo-autonomous system, the nonlinear normal modes are constructed by the invariant manifold method on the state space and substituted back into the original discrete equations. By repeating the above mentioned steps, the dynamic responses can be numerically obtained asymptotically using such iterative approach. Quadrature phase difference between the general coordinates is verified for the gyroscopic system and traveling waves instead of standing waves are found in the time-domain complex modal analysis.
Skip Nav Destination
Article navigation
January 2018
Technical Briefs
Forced Response Analysis of Pipes Conveying Fluid by Nonlinear Normal Modes Method and Iterative Approach
Feng Liang,
Feng Liang
School of Energy and Power Engineering,
Shenyang University of Chemical Technology,
Shenyang 110142, China;
Shenyang University of Chemical Technology,
Shenyang 110142, China;
College of Mechanical Engineering and
Applied Electronics,
Beijing University of Technology,
Beijing 100124, China
e-mail: lf84411@163.com
Applied Electronics,
Beijing University of Technology,
Beijing 100124, China
e-mail: lf84411@163.com
Search for other works by this author on:
Xiao-Dong Yang,
Xiao-Dong Yang
College of Mechanical Engineering and
Applied Electronics,
Beijing University of Technology,
Beijing 100124, China
e-mail: jxdyang@163.com
Applied Electronics,
Beijing University of Technology,
Beijing 100124, China
e-mail: jxdyang@163.com
Search for other works by this author on:
Ying-Jing Qian,
Ying-Jing Qian
College of Mechanical Engineering and
Applied Electronics,
Beijing University of Technology,
Beijing 100124, China
e-mail: candiceqyj@163.com
Applied Electronics,
Beijing University of Technology,
Beijing 100124, China
e-mail: candiceqyj@163.com
Search for other works by this author on:
Wei Zhang
Wei Zhang
College of Mechanical Engineering and
Applied Electronics,
Beijing University of Technology,
Beijing 100124, China
e-mail: sandyzhang0@yahoo.com
Applied Electronics,
Beijing University of Technology,
Beijing 100124, China
e-mail: sandyzhang0@yahoo.com
Search for other works by this author on:
Feng Liang
School of Energy and Power Engineering,
Shenyang University of Chemical Technology,
Shenyang 110142, China;
Shenyang University of Chemical Technology,
Shenyang 110142, China;
College of Mechanical Engineering and
Applied Electronics,
Beijing University of Technology,
Beijing 100124, China
e-mail: lf84411@163.com
Applied Electronics,
Beijing University of Technology,
Beijing 100124, China
e-mail: lf84411@163.com
Xiao-Dong Yang
College of Mechanical Engineering and
Applied Electronics,
Beijing University of Technology,
Beijing 100124, China
e-mail: jxdyang@163.com
Applied Electronics,
Beijing University of Technology,
Beijing 100124, China
e-mail: jxdyang@163.com
Ying-Jing Qian
College of Mechanical Engineering and
Applied Electronics,
Beijing University of Technology,
Beijing 100124, China
e-mail: candiceqyj@163.com
Applied Electronics,
Beijing University of Technology,
Beijing 100124, China
e-mail: candiceqyj@163.com
Wei Zhang
College of Mechanical Engineering and
Applied Electronics,
Beijing University of Technology,
Beijing 100124, China
e-mail: sandyzhang0@yahoo.com
Applied Electronics,
Beijing University of Technology,
Beijing 100124, China
e-mail: sandyzhang0@yahoo.com
1Corresponding author.
Contributed by the Design Engineering Division of ASME for publication in the JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS. Manuscript received December 18, 2016; final manuscript received August 2, 2017; published online October 9, 2017. Assoc. Editor: Katrin Ellermann.
J. Comput. Nonlinear Dynam. Jan 2018, 13(1): 014502 (5 pages)
Published Online: October 9, 2017
Article history
Received:
December 18, 2016
Revised:
August 2, 2017
Citation
Liang, F., Yang, X., Qian, Y., and Zhang, W. (October 9, 2017). "Forced Response Analysis of Pipes Conveying Fluid by Nonlinear Normal Modes Method and Iterative Approach." ASME. J. Comput. Nonlinear Dynam. January 2018; 13(1): 014502. https://doi.org/10.1115/1.4037594
Download citation file:
Get Email Alerts
Numerical Simulation Method for the Rain-Wind Induced Vibration of the Three-Dimensional Flexible Stay Cable
J. Comput. Nonlinear Dynam (March 2025)
Complex Modal Synthesis Method for Viscoelastic Flexible Multibody System Described by ANCF
J. Comput. Nonlinear Dynam (March 2025)
A Nodal-Lie-Group beam element for absolute nodal coordinate formulations
J. Comput. Nonlinear Dynam
Modal Analysis for Localization in Multiple Nonlinear Tuned Mass Dampers Installed on a Structure
J. Comput. Nonlinear Dynam
Related Articles
A Semi-Analytical Method for Calculation of Strongly Nonlinear Normal Modes of Mechanical Systems
J. Comput. Nonlinear Dynam (April,2018)
Approaches for Reduced-Order Modeling of Electrically Actuated von-Karman Microplates
J. Comput. Nonlinear Dynam (January,2017)
Simulation-Free Hyper-Reduction for Geometrically Nonlinear Structural Dynamics: A Quadratic Manifold Lifting Approach
J. Comput. Nonlinear Dynam (July,2018)
A Lumped-Parameter Model of Multiscale Dynamics in Steam Supply Systems
J. Comput. Nonlinear Dynam (November,2016)
Related Proceedings Papers
Related Chapters
Experimental and Statistical Study on the Noise Generated by Surface Defects of Bearing Rolling Bodies
Bearing and Transmission Steels Technology
Interface with Stationary Equipment
Pipe Stress Engineering
Pipe Vibration Testing and Analysis
Companion Guide to the ASME Boiler and Pressure Vessel Code, Volume 2, Third Edition