This research introduces a model of a delayed reaction–diffusion fractional neural network with time-varying delays. The Mittag–Leffler-type stability of the solutions is investigated, and new sufficient conditions are established by the use of the fractional Lyapunov method. Mittag–Leffler-type synchronization criteria are also derived. Three illustrative examples are established to exhibit the proposed sufficient conditions.

References

References
1.
Chua
,
L. O.
, and
Yang
,
L.
,
1988
, “
Cellular Neural Networks: Theory
,”
IEEE Trans. Circuits Syst.
,
35
(
10
), pp.
1257
1272
.
2.
Chua
,
L. O.
, and
Yang
,
L.
,
1988
, “
Cellular Neural Networks: Applications
,”
IEEE Trans. Circuits Syst.
,
35
(
10
), pp.
1273
1290
.
3.
Chua
,
L. O.
,
1999
, “
Passivity and Complexity
,”
IEEE Trans. Circuits Syst. I
,
46
(
1
), pp.
71
82
.
4.
Itoh
,
M.
, and
Chua
,
L. O.
,
2006
, “
Complexity of Reaction-Diffusion CNN
,”
Internat. J. Bifur. Chaos
,
16
(
9
), pp.
2499
2527
.
5.
Liang
,
J. L.
, and
Cao
,
J.
,
2003
, “
Global Exponential Stability of Reaction-Diffusion Recurrent Neural Networks With Time-Varying Delays
,”
Phys. Lett. A
,
314
(
5–6
), pp.
434
442
.
6.
Lou
,
X.
, and
Cui
,
B.
,
2007
, “
Boundedness and Exponential Stability for Nonautonomous Cellular Neural Networks With Reaction-Diffusion Terms
,”
Chaos Solitons Fractals
,
33
(
2
), pp.
653
662
.
7.
Lu
,
J. G.
,
2008
, “
Global Exponential Stability and Periodicity of Reaction-Diffusion Delayed Recurrent Neural Networks With Dirichlet Boundary Conditions
,”
Chaos Solitons Fractals
,
35
(
1
), pp.
116
125
.
8.
Wang
,
Y.
, and
Cao
,
J.
,
2007
, “
Synchronization of a Class of Delayed Neural Networks With Reaction-Diffusion Terms
,”
Phys. Lett. A
,
369
(
3
), pp.
201
211
.
9.
Chen
,
W. H.
,
Liu
,
L.
, and
Lu
,
X.
,
2017
, “
Intermittent Synchronization of Reaction-Diffusion Neural Networks With Mixed Delays Via Razumikhin Technique
,”
Nonlinear Dyn.
,
87
(
1
), pp.
535
551
.
10.
Gan
,
Q.
,
2017
, “
Exponential Synchronization of Generalized Neural Networks With Mixed Time-Varying Delays and Reaction-Diffusion Terms Via Aperiodically Intermittent Control
,”
Chaos
,
27
(
1
), p.
013113
.
11.
Rakkiyappan
,
R.
,
Dharani
,
S.
, and
Zhu
,
Q.
,
2015
, “
Synchronization of Reaction-Diffusion Neural Networks With Time-Varying Delays Via Stochastic Sampled-Data Controller
,”
Nonlinear Dyn.
,
79
(
1
), pp.
485
500
.
12.
Diethelm
,
K.
,
2010
,
The Analysis of Fractional Differential Equations. An Application-Oriented Exposition Using Differential Operators of Caputo Type
,
Springer
,
Berlin
.
13.
Kilbas
,
A. A.
,
Srivastava
,
H. M.
, and
Trujillo
,
J. J.
,
2006
,
Theory and Applications of Fractional Differential Equations
,
Elsevier
,
Amsterdam, The Netherlands
.
14.
Podlubny
,
I.
,
1999
,
Fractional Differential Equations
,
Academic Press
,
San Diego, CA
.
15.
Trigeassou
,
J. C.
,
Maamri
,
N.
, and
Oustaloup
,
A.
,
2016
, “
Lyapunov Stability of Commensurate Fractional Order Systems: A Physical Interpretation
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
5
), p.
051007
.
16.
Baleanu
,
D.
,
Diethelm
,
K.
,
Scalas
,
E.
, and
Trujillo
,
J.
,
2017
,
Fractional Calculus: Models and Numerical Methods
,
World Scientific
,
Hackensack, NJ
.
17.
Baleanu
,
D.
, and
Mustafa
,
O. G.
,
2015
,
Asymptotic Integration and Stability for Ordinary, Functional and Discrete Differential Equations of Fractional Order
,
World Scientific
,
Hackensack, NJ
.
18.
Stamova
,
I.
, and
Stamov
,
G.
,
2013
, “
Lipschitz Stability Criteria for Functional Differential Systems of Fractional Order
,”
J. Math. Phys.
,
54
(4), p.
043502
.
19.
Stamova
,
I.
, and
Stamov
,
G.
,
2017
,
Functional and Impulsive Differential Equations of Fractional Order: Qualitative Analysis and Applications
,
CRC Press
,
Boca Raton, FL
.
20.
Gafiychuk
,
V.
, and
Datsko
,
B.
,
2010
, “
Mathematical Modeling of Different Types of Instabilities in Time Fractional Reaction-Diffusion Systems
,”
Comput. Math. Appl.
,
59
(
3
), pp.
1101
1107
.
21.
Lenzi
,
E. K.
,
dos Santos
,
M. A. F.
,
Lenzi
,
M. K.
, and
Menechini Neto
,
R.
,
2017
, “
Solutions for a Mass Transfer Process Governed by Fractional Diffusion Equations With Reaction Terms
,”
Commun. Nonlinear Sci. Numer. Simul.
,
48
, pp.
307
317
.
22.
Ouyang
,
Z.
,
2011
, “
Existence and Uniqueness of the Solutions for a Class of Nonlinear Fractional Order Partial Differential Equations With Delay
,”
Comput. Math. Appl.
,
61
(
4
), pp.
860
870
.
23.
Zhu
,
B.
,
Liu
,
L.
, and
Wu
,
Y.
,
2016
, “
Local and Global Existence of Mild Solutions for a Class of Nonlinear Fractional Reaction-Diffusion Equations With Delay
,”
Appl. Math. Lett.
,
61
, pp.
73
79
.
24.
Chen
,
B. S.
, and
Chen
,
J. J.
,
2015
, “
Global Asymptotical ω–Periodicity of a Fractional-Order Non-Autonomous
,”
Neural Networks
,
68
, pp.
78
88
.
25.
Kaslik
,
E.
, and
Sivasundaram
,
S.
,
2012
, “
Nonlinear Dynamics and Chaos in Fractional Order Neural Networks
,”
Neural Networks
,
32
, pp.
245
256
.
26.
Song
,
C.
, and
Cao
,
J.
,
2014
, “
Dynamics in Fractional-Order Neural Networks
,”
Neurocomputing
,
142
, pp.
494
498
.
27.
Rakkiyappan
,
R.
,
Velmurugan
,
G.
, and
Cao
,
J.
,
2015
, “
Stability Analysis of Memristor-Based Fractional-Order Neural Networks With Different Memductance Functions
,”
Cognit. Neurodynamics
,
9
(
2
), pp.
145
177
.
28.
Lundstrom
,
B.
,
Higgs
,
M.
,
Spain
,
W.
, and
Fairhall
,
A.
,
2008
, “
Fractional Differentiation by Neocortical Pyramidal Neurons
,”
Nat. Neurosci.
,
11
, pp.
1335
1342
.
29.
Stamov
,
G.
, and
Stamova
,
I.
,
2017
, “
Impulsive Fractional-Order Neural Networks With Time-Varying Delays: Almost Periodic Solutions
,”
Neural Comput. Appl.
,
28
(
11
), pp.
3307
3316
.
30.
Wang
,
H.
,
Yu
,
Y.
,
Wen
,
G.
, and
Zhang
,
S.
,
2015
, “
Stability Analysis of Fractional-Order Neural Networks With Time Delay
,”
Neural Process. Lett.
,
42
(
2
), pp.
479
500
.
31.
Wu
,
R.
,
Hei
,
X.
, and
Chen
,
L.
,
2013
, “
Finite-Time Stability of Fractional-Order Neural Networks With Delay
,”
Commun. Theor. Phys.
,
60
(
2
), pp.
189
193
.
32.
Ke
,
Y.
, and
Miao
,
C.
,
2015
, “
Stability Analysis of Fractional-Order Cohen-Grossberg Neural Networks With Time Delay
,”
Int. J. Comput. Math.
,
92
(
6
), pp.
1102
1113
.
33.
Golmankhaneh
,
A. K.
,
Arefi
,
R.
, and
Baleanu
,
D.
,
2015
, “
Synchronization in a Non-Identical Fractional Order of a Proposed Modified System
,”
J. Vib. Control
,
21
(
6
), pp.
1154
1161
.
34.
Singh
,
A. K.
,
Yadav
,
V. K.
, and
Das
,
S.
,
2016
, “
Dual Combination Synchronization of the Fractional Order Complex Chaotic Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
12
(
1
), p.
011017
.
35.
Velmurugan
,
G.
, and
Rakkiyapan
,
R.
,
2015
, “
Hybrid Projective Synchronization of Fractional Order Chaotic Complex Systems With Time Delays
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
3
), p.
031016
.
36.
Wu
,
G. C.
,
Baleanu
,
D.
,
Xie
,
H. P.
, and
Chen
,
F. L.
,
2016
, “
Chaos Synchronization of Fractional Chaotic Maps Based on the Stability Condition
,”
Phys. A
,
460
, pp.
374
383
.
37.
Zhou
,
Q.
, and
Wan
,
L.
,
2009
, “
Impulsive Effects on Stability of Cohen-Grossberg-Type Bidirectional Associative Memory Neural Networks With Delays
,”
Nonlinear Anal. Real World Appl.
,
10
(
4
), pp.
2531
2540
.
38.
Li
,
Y.
,
Chen
,
Y. Q.
, and
Podlubny
,
I.
,
2010
, “
Stability of Fractional Order Nonlinear Dynamic Systems: Lyapunov Direct Method and Generalized Mittag-Leffler Stability
,”
Comput. Math. Appl.
,
59
(
5
), pp.
1810
1821
.
39.
Stamova
,
I. M.
,
2015
, “
Mittag-Leffler Stability of Impulsive Differential Equations of Fractional Order
,”
Q. Appl. Math.
,
73
, pp.
525
535
.
40.
Chen
,
J. J.
,
Zeng
,
Z. G.
, and
Jiang
,
P.
,
2014
, ” “
Global Mittag-Leffler Stability and Synchronization of Memristor-Based Fractional-Order Neural Networks
,”
Neural Networks
,
51
, pp.
1
8
.
41.
Stamova
,
I. M.
,
2014
, ” “
Global Mittag-Leffler Stability and Synchronization of Impulsive Fractional-Order Neural Networks With Time-Varying Delays
,”
Nonlinear Dyn.
,
77
(
4
), pp.
1251
1260
.
42.
Aguila-Camacho
,
N.
,
Duarte-Mermoud
,
M. A.
, and
Gallegos
,
J. A.
,
2014
, “
Lyapunov Functions for Fractional Order Systems
,”
Commun. Nonlinear Sci. Numer. Simul.
,
19
(
9
), pp.
2951
2957
.
You do not currently have access to this content.