While several curvature expressions have been used in the literature, some of these expressions differ from basic geometry definitions and lead to kinematic coupling between bending and shear deformations. This paper uses three different elastic force formulations in order to examine the effect of the curvature definition in the large displacement analysis of beams. In the first elastic force formulation, a general continuum mechanics approach (method 1) based on the nonlinear strain–displacement relationship is used. The second approach (method 2) is based on a classical nonlinear beam theory, in which a curvature expression consistent with differential geometry and independent of the shear deformation is used. The third elastic force formulation (method 3) employs a curvature expression that depends on the shear angle. In order to examine numerically the effect of using different curvature definitions, three different planar beam elements are used. The first element (element I) is the fully parameterized absolute nodal coordinate formulation (ANCF) shear deformable beam element. The second element (element II) is an ANCF consistent rotation-based formulation (CRBF) shear deformable beam element obtained from element I by consistently replacing the position gradient vectors by rotation parameters. The third element (element III) is a low-order bilinear ANCF/CRBF finite element in which nonzero differential geometry-based curvature definition cannot be obtained because of the low order of interpolation. Numerical results are obtained using the three elastic force formulations and the three finite elements in order to shed light on the definition of bending and shear in the large displacement analysis of beams. The results obtained in this investigation show that the use of method 2, with a penalty formulation that restricts the excessive cross section deformation, can improve significantly the convergence of the ANCF finite element.

References

References
1.
Ding
,
J.
,
Wallin
,
M.
,
Wei
,
C.
,
Recuero
,
A. M.
, and
Shabana
,
A. A.
,
2014
, “
Use of Independent Rotation Field in the Large Displacement Analysis of Beams
,”
Nonlinear Dyn.
,
76
(
3
), pp.
1829
1843
.
2.
Shabana
,
A. A.
,
2015
, “
ANCF Consistent Rotation-Based Finite Element Formulation
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(1), p.
014502
.
3.
Zheng
,
Y.
, and
Shabana
,
A. A.
,
2017
, “
A Two-Dimensional Shear Deformable ANCF Consistent Rotation-Based Formulation Beam Element
,”
Nonlinear Dyn.
,
87
(
2
), pp.
1031
1043
.
4.
Reissner
,
E.
,
1972
, “
On a One Dimensional Finite Strain Beam: The Plane Problem
,”
J. Appl. Math. Phys.
,
23
(
5
), pp.
795
804
.
5.
Reissner
,
E.
,
1973
, “
On a One Dimensional Large-Displacement, Finite Strain Beam Theory
,”
Stud. Appl. Math.
,
52
(
2
), pp.
87
95
.
6.
Reissner
,
E.
,
1981
, “
On Finite Deformations of Space-Curved Beams
,”
J. Appl. Math. Phys. (ZAMP)
,
32
(
6
), pp.
734
744
.
7.
Antman
,
S. S.
,
1972
, “
The Theory of Rods
,”
Handb. Phys.
,
VIa/2
, pp.
641
703
.
8.
Antman
,
S. S.
,
1974
, “
Kirchhoff's Problem for Nonlinearly Elastic Rods
,”
Q. Appl. Math.
,
32
(
3
), pp.
221
240
.
9.
Simo
,
J. C.
, and
Vu-Quoc
,
L.
,
1986
, “
On the Dynamics of Flexible Beams Under Large Overall Motions—The Plane Case: Parts I and II
,”
ASME J. Appl. Mech.
,
53
(
4
), pp.
849
863
.
10.
Omar
,
M. A.
, and
Shabana
,
A. A.
,
2001
, “
A Two-Dimensional Shear Deformable Beam for Large Rotation and Deformation Problems
,”
J. Sound Vib.
,
243
(
3
), pp.
565
576
.
11.
Dmitrochenko
,
O.
, and
Mikkola
,
A.
,
2011
, “
Digital Nomenclature Code for Topology and Kinematics of Finite Elements Based on the Absolute Nodal Co-Ordinate Formulation
,”
IMechE J. Multibody Dyn.
,
225
(
1
), pp.
34
51
.
12.
Hu
,
W.
,
Tian
,
Q.
, and
Hu
,
H. Y.
,
2014
, “
Dynamics Simulation of the Liquid-Filled Flexible Multibody System Via the Absolute Nodal Coordinate Formulation and SPH Method
,”
Nonlinear Dyn.
,
75
(
4
), pp.
653
671
.
13.
Liu
,
C.
,
Tian
,
Q.
, and
Hu
,
H. Y.
,
2011
, “
Dynamics of Large Scale Rigid-Flexible Multibody System Composed of Composite Laminated Plates
,”
Multibody Syst. Dyn.
,
26
(
3
), pp.
283
305
.
14.
Nachbagauer
,
K.
,
2013
, “
Development of Shear and Cross-Section Deformable Beam Finite Elements Applied to Large Deformation and Dynamics Problems
,”
Ph.D. dissertation
, Johannes Kepler University, Linz, Austria.https://hal.archives-ouvertes.fr/hal-00855840/document
15.
Orzechowski
,
G.
,
2012
, “
Analysis of Beam Elements of Circular Cross Section Using the Absolute Nodal Coordinate Formulation
,”
Arch. Mech. Eng.
,
59
, pp.
283
296
.http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-ca63dc64-4389-4e6b-8091-6bad7462c8ef
16.
Orzechowski
,
G.
, and
Frączek
,
J.
,
2012
, “
Integration of the Equations of Motion of Multibody Systems Using Absolute Nodal Coordinate Formulation
,”
Acta Mech. Autom.
,
6
(2), pp.
75
83
.https://www.researchgate.net/publication/268060752_Integration_of_the_equations_of_motion_of_multibody_systems_using_absolute_nodal_coordinate_formulation
17.
Orzechowski
,
G.
, and
Frączek
,
J.
,
2015
, “
Nearly Incompressible Nonlinear Material Models in the Large Deformation Analysis of Beams Using ANCF
,”
Nonlinear Dyn.
,
82
(
1–2
), pp.
451
464
.
18.
Tian
,
Q.
,
Chen
,
L. P.
,
Zhang
,
Y. Q.
, and
Yang
,
J. Z.
,
2009
, “
An Efficient Hybrid Method for Multibody Dynamics Simulation Based on Absolute Nodal Coordinate Formulation
,”
ASME J. Comput. Nonlinear Dyn.
,
4
(
2
), p.
021009
.
19.
Tian
,
Q.
,
Sun
,
Y. L.
,
Liu
,
C.
,
Hu
,
H. Y.
, and
Paulo
,
F.
,
2013
, “
Elasto-Hydro-Dynamic Lubricated Cylindrical Joints for Rigid-Flexible Multibody Dynamics
,”
Comput. Struct.
,
114–115
, pp.
106
120
.
20.
Shabana
,
A. A.
,
2012
,
Computational Continuum Mechanics
,
2nd ed.
,
Cambridge University Press
,
New York
.
21.
Kreyszig
,
E.
,
1991
,
Differential Geometry
,
Dover Publications
,
Mineola, NY
.
22.
Simo
,
J. C.
,
1985
, “
A Finite Strain Beam Formulation. The Three Dimensional Dynamics Problem—Part I
,”
Comp. Meth. Appl. Mech. Eng.
,
49
(
1
), pp.
55
70
.
23.
Simo
,
J. C.
, and
Vu-Quoc
,
L.
,
1986
, “
A Three-Dimensional Finite-Strain Rod Model—Part II: Computational Aspects
,”
Comput. Methods Appl. Mech. Eng.
,
58
(
1
), pp.
79
116
.
24.
Goldstein
,
H.
,
1950
,
Classical Mechanics
,
1st ed.
,
Addison Wesley
,
Boston, MA
.
25.
Roberson
,
R. E.
, and
Schwertassek
,
R.
,
1988
,
Dynamics of Multibody Systems
,
1st ed.
,
Springer-Verlag
,
Berlin
.
26.
Shabana
,
A. A.
,
2010
,
Computational Dynamics
,
3rd ed.
,
Wiley
,
Chichester, UK
.
27.
Shampine
,
L.
, and
Gordon
,
M.
,
1975
,
Computer Solution of ODE: The Initial Value Problem
,
Freeman
,
San Francisco, CA
.
You do not currently have access to this content.