Based on the special dynamical property of continuous transition at certain degenerate grazing points in the single-degree-of-freedom impact oscillator, the control problem of the grazing-induced chaos is investigated in this paper. To design degenerate grazing bifurcations, we show how to obtain the degenerate grazing points of the 1/n impact periodic motions by the existence and stability analysis first. Then, a discrete-in-time feedback control strategy is used to suppress the grazing-induced chaos into the 1/n impact periodic motions precisely by the desired degenerate grazing bifurcation. The feasibility of the control strategy is verified by numerical simulations.

References

References
1.
Peterka
,
F.
, and
Vacík
,
J.
,
1992
, “
Transition to Chaotic Motion in Mechanical Systems With Impacts
,”
J. Sound Vib.
,
154
(
1
), pp.
95
115
.
2.
Xie
,
J. H.
, and
Ding
,
W. C.
,
2005
, “
Hopf–Hopf Bifurcation and Invariant Torus of a Vibro-Impact System
,”
Int. J. Non Linear Mech.
,
40
(
4
), pp.
531
543
.
3.
Ding
,
W. C.
, and
Xie
,
J. H.
,
2006
, “
Torus T2 and its Routes to Chaos of a Vibro-Impact System
,”
Phys. Lett. A
,
349
(
5
), pp.
324
330
.
4.
Luo
,
G. W.
, and
Lv
,
X. H.
,
2009
, “
Controlling Bifurcation and Chaos of a Plastic Impact Oscillator
,”
Nonlinear Anal.: Real World Appl.
,
10
(
4
), pp.
2047
2061
.
5.
Mason
,
J. F.
, and
Piiroinen
,
P. T.
,
2012
, “
Saddle-Point Solutions and Grazing Bifurcations in an Impacting System
,”
Chaos Interdiscip. J. Nonlinear Sci.
,
22
(
1
), p.
013106
.
6.
Wang
,
L.
,
Xu
,
W.
, and
Li
,
Y.
,
2008
, “
Impulsive Control of a Class of Vibro-Impact Systems
,”
Phys. Lett. A
,
372
(
32
), pp.
5309
5313
.
7.
Wen
,
G. L.
,
Xu
,
H. D.
, and
Chen
,
Z.
,
2010
, “
Anti-Controlling Quasi-Periodic Impact Motion of an Inertial Impact Shaker System
,”
J. Sound Vib.
,
329
(
19
), pp.
4040
4047
.
8.
de Souza
,
S. L. T.
,
Wiercigroch
,
M.
,
Caldas
,
I. L.
, and
Balthazar
,
J. M.
,
2008
, “
Suppressing Grazing Chaos in Impacting System by Structural Nonlinearity
,”
Chaos Solitons Fractals
,
38
(
3
), pp.
864
869
.
9.
Nordmark
,
A. B.
,
1991
, “
Non-Periodic Motion Caused by Grazing Incidence in an Impact Oscillator
,”
J. Sound Vib.
,
145
(
2
), pp.
279
297
.
10.
Nordmark
,
A. B.
,
1997
, “
Universal Limit Mapping in Grazing Bifurcations
,”
Phys. Rev. E
,
55
(
1
), pp.
266
270
.
11.
Fredriksson
,
M. H.
, and
Nordmark
,
A. B.
,
1997
, “
Bifurcations Caused by Grazing Incidence in Many Degrees of Freedom Impact Oscillators
,”
Proc. R. Soc. A
,
453
(
1961
), pp.
1261
1276
.
12.
Chillingworth
,
D. R. J.
,
2002
, “
Discontinuity Geometry for an Impact Oscillator
,”
Dyn. Syst.
,
17
(
4
), pp.
389
420
.
13.
Chillingworth
,
D. R. J.
,
2010
, “
Dynamics of an Impact Oscillator Near a Degenerate Graze
,”
Nonlinearity
,
23
(
11
), pp.
2723
2748
.
14.
Molenaar
,
J.
,
de Weger
,
J. G.
, and
van de Water
,
W.
,
2001
, “
Mappings of Grazing Impact Oscillators
,”
Nonlinearity
,
14
(
2
), pp.
301
321
.
15.
Piiroinen
,
P. T.
,
Virgin
,
L. N.
, and
Champneys
,
A. R.
,
2004
, “
Chaos and Period Adding: Experimental and Numerical Verification of the Grazing Bifurcation
,”
J. Nonlinear. Sci.
,
14
(
4
), pp.
383
404
.
16.
Thota
,
P.
, and
Dankowicz
,
H.
,
2006
, “
Continuous and Discontinuous Grazing Bifurcations in Impacting Oscillators
,”
Phys. D
,
214
(
2
), pp.
187
197
.
17.
Wilcox
,
B.
,
Svahn
,
F.
,
Dankowicz
,
H.
, and
Jerrelind
,
J.
,
2009
, “
Transient Growth Rates of Near-Grazing Impact Velocities: Theory and Experiments
,”
J. Sound Vib.
,
325
(
4
), pp.
950
958
.
18.
Wen
,
G. L.
,
Yin
,
S.
,
Xu
,
H. D.
,
Zhang
,
S. J.
, and
Lv
,
Z. Y.
,
2016
, “
Analysis of Grazing Bifurcation From Periodic Motion to Quasi-Periodic Motion in Impact-Damper Systems
,”
Chaos Solitons Fractals
,
83
, pp.
112
118
.
19.
Mehran
,
K.
,
Zahawi
,
B.
, and
Giaouris
,
D.
,
2012
, “
Investigation of the Near-Grazing Behavior in Hard-Impact Oscillators Using Model-Based TS Fuzzy Approach
,”
Nonlinear Dyn.
,
69
(
3
), pp.
1293
1309
.
20.
Dankowicz
,
H.
, and
Svahn
,
F.
,
2007
, “
On the Stabilizability of Near-Grazing Dynamics in Impact Oscillators
,”
Int. J. Robust Nonlinear Control
,
17
(
15
), pp.
1405
1429
.
21.
Misra
,
S.
, and
Dankowicz
,
H.
,
2010
, “
Control of Near-Grazing Dynamics and Discontinuity Induced Bifurcations in Piecewise-Smooth Dynamical Systems
,”
Int. J. Robust Nonlinear Control
,
20
(
16
), pp.
1836
1851
.
22.
Bernardo
,
M.
,
Budd
,
C. J.
,
Champneys
,
A. R.
, and
Kowalczyk
,
P.
,
2008
,
Piecewise-Smooth Dynamical Systems: Theory and Applications
,
Springer
,
London
.
23.
Dankowicz
,
H.
, and
Jerrelind
,
J.
, 2005, “
Control of Near-Grazing Dynamics in Impact Oscillators
,”
Proc. R. Soc. Lond. A
,
461
(2063), pp. 3365–3380.
24.
Kundu
,
S.
,
Banerjee
,
S.
, and
Giaouris
,
D.
,
2011
, “
Vanishing Singularity in Hard Impact Systems
,”
Discrete Contin. Dyn. Syst.-Ser. B
,
16
(
1
), pp.
319
332
.
25.
Xu
,
J. Q.
,
Chen
,
P.
, and
Li
,
Q. H.
,
2015
, “
Theoretical Analysis of Co-Dimension-Two Grazing Bifurcation in n-Degree-of-Freedom Impact Oscillator With Symmetrical Constrains
,”
Nonlinear Dyn.
,
82
(
4
), pp.
1641
1657
.
26.
Foale
,
S.
,
1994
, “
Analytical Determination of Bifurcations in an Impact Oscillator
,”
Philos. Trans. R. Soc. London, Ser. A
,
347
(
1683
), pp.
353
364
.
27.
Peterka
,
F.
,
1996
, “
Bifurcations and Transition Phenomena in an Impact Oscillator
,”
Chaos Solitons Fractals
,
7
(10), pp. 1635–1647.
28.
Thota
,
P.
,
Zhao
,
X. P.
, and
Dankowicz
,
H.
,
2006
, “
Co-dimension-Two Grazing Bifurcations in Single-Degree-of-Freedom Impact Oscillators
,”
ASME J. Comput. Nonlinear Dynam.
,
1
(4), pp. 328–335.
29.
Zhao
,
X. P.
, and
Dankowicz
,
H.
, 2006, “
Unfolding Degenerate Grazing Dynamics in Impact Actuators
,”
Nonlinearity
,
19
(2), pp. 399–418.
30.
Dankowicz
,
H.
, and
Zhao
,
X. P.
, 2005, “
Local Analysis of Co-Dimension-One and Co-Dimension-Two Grazing Bifurcations in Impact Microactuators
,”
Phys. D (Amsterdam, Neth.)
,
202
(3), pp. 238–257.
31.
Wen
,
G. L.
, and
Xu
,
D. L.
, 2004, “
Implicit Criteria of Eigenvalue Assignment and Transversality for Bifurcation Control in Four-Dimensional Maps
,”
Int. J. Bifurcation Chaos
,
14
(10), pp. 3489–3503.
You do not currently have access to this content.