A new three-dimensional (3D) chaotic system is proposed with four nonlinear terms which include two quadratic terms. To analyze the dynamical properties of the new system, mathematical tools such as Lyapunov exponents (LEs), Kaplan–York dimensions, observability constants, and bifurcation diagram have been exploited. The results of these calculations verify the specific features of the new system and further determine the effect of different system parameters on its dynamics. The proposed system has been experimentally implemented as an analog circuit which practically confirms its predicted chaotic behavior. Moreover, the problem of master–slave synchronization of the proposed chaotic system is considered. To solve this problem, we propose a new method for designing a nonfragile Takagi–Sugeno (T–S) fuzzy static output feedback synchronizing controller for a general chaotic T–S system and applied the method to the proposed system. Some practical advantages are achieved employing the new nonlinear controller as well as using system output data instead of the full-state data and considering gain variations because of the uncertainty in values of practical components used in implementation the controller. Then, the designed controller has been realized using analog devices to synchronize two circuits with the proposed chaotic dynamics. Experimental results show that the proposed nonfragile controller successfully synchronizes the chaotic circuits even with inexact analog devices.

References

References
1.
Ivancevic
,
V. G.
, and
Ivancevic
,
T. T.
,
2008
,
Complex Nonlinearity: Chaos, Phase Transitions, Topology Change, and Path Integrals
,
Springer Science & Business Media
,
Berlin
.
2.
Rial
,
J. A.
,
2004
, “
Abrupt Climate Change: Chaos and Order at Orbital and Millennial Scales
,”
Global Planet. Change
,
41
(
2
), pp.
95
109
.
3.
Chen
,
D.
, and
Liu
,
W.
,
2016
, “
Chaotic Behavior and Its Control in a Fractional-Order Energy Demand–Supply System
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
6
), p.
061010
.
4.
Zhou
,
L.
,
Chen
,
F.
, and
Chen
,
Y.
,
2015
, “
Bifurcations and Chaotic Motions of a Class of Mechanical System With Parametric Excitations
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
5
), p.
054502
.
5.
Carlen
,
E.
,
Chatelin
,
R.
,
Degond
,
P.
, and
Wennberg
,
B.
,
2013
, “
Kinetic Hierarchy and Propagation of Chaos in Biological Swarm Models
,”
Phys. D
,
260
, pp.
90
111
.
6.
Towfighian
,
S.
,
Heppler
,
G. R.
, and
Abdel-Rahman
,
E. M.
,
2010
, “
Analysis of a Chaotic Electrostatic Micro-Oscillator
,”
ASME J. Comput. Nonlinear Dyn.
,
6
(
1
), p.
011001
.
7.
Callan
,
K. L.
,
Illing
,
L.
,
Gao
,
Z.
,
Gauthier
,
D. J.
, and
Schöll
,
E.
,
2010
, “
Broadband Chaos Generated by an Optoelectronic Oscillator
,”
Phys. Rev. Lett.
,
104
(
11
), p.
113901
.
8.
Liu
,
P.
,
Song
,
H.
, and
Li
,
X.
,
2015
, “
Observe-Based Projective Synchronization of Chaotic Complex Modified Van Der Pol-Duffing Oscillator With Application to Secure Communication
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
5
), p.
051015
.
9.
Xu
,
Y.
,
Wang
,
H.
,
Li
,
Y.
, and
Pei
,
B.
,
2014
, “
Image Encryption Based on Synchronization of Fractional Chaotic Systems
,”
Commun. Nonlinear Sci. Numer. Simul.
,
19
(
10
), pp.
3735
3744
.
10.
Lorenz
,
E. N.
,
1963
, “
Deterministic Nonperiodic Flow
,”
J. Atmos. Sci.
,
20
, pp.
130
141
.
11.
Liu
,
Y.
,
Li
,
L.
, and
Feng
,
Y.
,
2016
, “
Finite-Time Synchronization for High-Dimensional Chaotic Systems and Its Application to Secure Communication
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
1
), p.
051028
.
12.
,
J.
, and
Chen
,
G.
,
2002
, “
A New Chaotic Attractor Coined
,”
Int. J. Bifurcation Chaos
,
12
(
3
), pp.
659
661
.
13.
Arefi
,
M.
,
2016
, “
Adaptive Robust Stabilization of Rossler System With Time-Varying Mismatched Parameters Via Scalar Input
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
4
), p.
041024
.
14.
Sprott
,
J. C.
,
2000
, “
A New Class of Chaotic Circuit
,”
Phys. Lett. A
,
266
(
1
), pp.
19
23
.
15.
Rezaei
,
D.
, and
Tavazoei
,
M. S.
,
2017
, “
Analysis of Oscillations in Relay Feedback Systems With Fractional-Order Integrating Plants
,”
ASME J. Comput. Nonlinear Dyn.
,
12
(
5
), p.
051023
.
16.
Cang
,
S.
,
Qi
,
G.
, and
Chen
,
Z.
,
2010
, “
A Four-Wing Hyper-Chaotic Attractor and Transient Chaos Generated From a New 4-D Quadratic Autonomous System
,”
Nonlinear Dyn.
,
59
(
3
), pp.
515
527
.
17.
Zarei
,
A.
,
2015
, “
Complex Dynamics in a 5-D Hyper-Chaotic Attractor With Four-Wing, One Equilibrium and Multiple Chaotic Attractors
,”
Nonlinear Dyn.
,
81
(
1–2
), pp.
585
605
.
18.
Singh
,
A. K.
, and
Yadav
,
V. K.
,
2016
, “
Dual Combination Synchronization of the Fractional Order Complex Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
12
(
1
), p.
011017
.
19.
Khamsuwan
,
P.
, and
Kuntanapreeda
,
S.
,
2016
, “
A Linear Matrix Inequality Approach to Output Feedback Control of Fractional-Order Unified Chaotic Systems With One Control Input
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
5
), p.
051021
.
20.
Klostermann
,
H.
,
Rohde
,
A.
, and
Piel
,
A.
,
1997
, “
Van der Pol Behavior of Virtual Anode Oscillations in the Sheath Around a Grid in a Double Plasma Device
,”
Phys. Plasmas
,
4
(
7
), p.
2406
.
21.
Tang
,
Y.
,
Mees
,
A.
, and
Chua
,
L. O.
,
1983
, “
Synchronization and Chaos
,”
IEEE Trans. Circuits Syst.
,
30
(
9
), pp.
620
626
.
22.
Feng
,
C.
,
Cai
,
L.
,
Kang
,
Q.
,
Wang
,
S.
, and
Zhang
,
H.
,
2015
, “
Novel Hyperchaotic System and Its Circuit Implementation
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
6
), p.
061012
.
23.
Rafiq Dar
,
M.
,
Ali Kant
,
N.
, and
Ahmad Khanday
,
F.
,
2017
, “
Electronic Implementation of Fractional-Order Newton–Leipnik Chaotic System With Application to Communication
,”
ASME J. Comput. Nonlinear Dyn.
,
12
(
5
), p.
054502
.
24.
Kaplan
,
J.
, and
Yorke
,
J. A.
,
1979
,
Lecture Notes in Mathematics
, Vol.
730
, H. O. Peitgen and H. O. Walther, eds.,
Springer
,
Berlin
, p.
204
.
25.
Asemani
,
M. H.
,
Yazdanpanah
,
M. J.
,
Majd
,
V. J.
, and
Golabi
,
A.
,
2013
, “
H∞ Control of TS Fuzzy Singularly Perturbed Systems Using Multiple Lyapunov Functions
,”
Circuits, Syst., Signal Process.
,
32
(
5
), pp.
2243
2266
.
26.
Li
,
H.
,
Wang
,
J.
,
Wu
,
L.
,
Lam
,
H. K.
, and
Gao
,
Y.
,
2017
, “
Optimal Guaranteed Cost Sliding Mode Control of Interval Type-2 Fuzzy Time-Delay Systems
,”
IEEE Trans. Fuzzy Syst.
,
PP
(
99
), p. 1.
27.
Razavi-Panah
,
J.
, and
Majd
,
V. J.
,
2008
, “
A Robust Multi-Objective DPDC for Uncertain T–S Fuzzy Systems
,”
Fuzzy Sets Syst.
,
159
(
20
), pp.
2749
2762
.
28.
Li
,
H.
,
Wang
,
J.
,
Du
,
H.
, and
Karimi
,
H. R.
,
2017
, “
Adaptive Sliding Mode Control for Takagi-Sugeno Fuzzy Systems and Its Applications
,”
IEEE Trans. Fuzzy Syst.
,
PP
(
99
), p. 1.
29.
Buscarino
,
A.
,
Fortuna
,
L.
,
Frasca
,
M.
, and
Sciuto
,
G.
,
2014
,
A Concise Guide to Chaotic Electronic Circuits
,
Springer
,
Berlin
.
30.
Lan
,
Y. H.
, and
Zhou
,
Y.
,
2013
, “
Non-Fragile Observer-Based Robust Control for a Class of Fractional-Order Nonlinear Systems
,”
Syst. Control Lett.
,
62
(
12
), pp.
1143
1150
.
31.
Huang
,
S.-J.
, and
Yang
,
G.-H.
,
2016
, “
Non-Fragile H∞ Dynamic Output Feedback Control for Uncertain Takagi–Sugeno Fuzzy Systems With Time-Varying Delay
,”
Int. J. Syst. Sci.
,
47
(
12
), pp.
2954
2964
.
32.
Guan
,
W.
, and
Liu
,
F.
,
2016
, “
Non-Fragile Fuzzy Dissipative Static Output Feedback Control for Markovian Jump Systems Subject to Actuator Saturation
,”
Neurocomputing
,
193
, pp.
123
132
.
33.
Sturm
,
J. F.
,
1999
, “
Using SeDuMi 1.02, a Matlab Toolbox for Optimization Over Symmetric Cones
,”
Optim. Methods Software
,
11
(
1–4
), pp.
625
653
.
You do not currently have access to this content.