The Kidder equation, y(x)+2xy(x)/1βy(x)=0,x[0,),β[0,1] with y(0)=1, and y()=0, is a second-order nonlinear two-point boundary value ordinary differential equation (ODE) on the semi-infinite domain, with a boundary condition in the infinite that describes the unsteady isothermal flow of a gas through a semi-infinite micro–nano porous medium and has widely used in the chemical industries. In this paper, a hybrid numerical method is introduced for solving this equation. First, by using the method of quasi-linearization, the equation is converted to a sequence of linear ODEs. Then these linear ODEs are solved by using the rational Legendre functions (RLFs) collocation method. By using 200 collocation points, we obtain a very good approximation solution and the value of the initial slope y(0)=1.19179064971942173412282860380015936403 for β=0.50, highly accurate to 38 decimal places. The convergence of numerical results is shown by decreasing the residual errors when the number of collocation points increases.

References

References
1.
Noye
,
B. J.
, and
Dehghan
,
M.
,
1999
, “
New Explicit Finite Difference Schemes for Two-Dimensional Diffusion Subject to Specification of Mass
,”
Numer. Methods Partial Differ. Equations
,
15
(
4
), pp.
521
534
.
2.
Choi
,
H. J.
, and
Kweon
,
J. R.
,
2016
, “
A Finite Element Method for Singular Solutions of the Navier Stokes Equations on a Non-Convex Polygon
,”
J. Comput. Appl. Math.
,
292
, pp.
342
362
.
3.
Parand
,
K.
,
Abbasbandy
,
S.
,
Kazem
,
S.
, and
Rezaei
,
A. R.
,
2011
, “
An Improved Numerical Method for a Class of Astrophysics Problems Based on Radial Basis Functions
,”
Phys. Scr.
,
83
(
1
), p.
015011
.
4.
Parand
,
K.
, and
Hemami
,
M.
,
2017
, “
Numerical Study of Astrophysics Equations by Meshless Collocation Method Based on Compactly Supported Radial Basis Function
,”
Int. J. Appl. Comput. Math.
,
3
(
2
), pp.
1053
1075
.
5.
Kazem
,
S.
,
Rad
,
J. A.
,
Parand
,
K.
,
Shaban
,
M.
, and
Saberi
,
H.
,
2012
, “
The Numerical Study on the Unsteady Flow of Gas in a Semi-Infinite Porous Medium Using an RBF Collocation Method
,”
Int. J. Comput. Math.
,
89
(
16
), pp.
2240
2258
.
6.
Franke
,
R.
,
1982
, “
Scattered Data Interpolation: Tests of Some Methods
,”
Math. Comput.
,
38
, pp.
181
200
.
7.
Rashedi
,
K.
,
Adibi
,
H.
,
Rad
,
J. A.
, and
Parand
,
K.
,
2014
, “
Application of Meshfree Methods for Solving the Inverse One-Dimensional Stefan Problem
,”
Eng. Anal. Boundary Elem.
,
40
, pp.
1
21
.
8.
Rad
,
J. A.
,
Kazem
,
S.
, and
Parand
,
K.
,
2014
, “
Optimal Control of a Parabolic Distributed Parameter System Via Radial Basis Functions
,”
Commun. Nonlinear Sci. Numer. Simul.
,
19
(
8
), pp.
2559
2567
.
9.
Parand
,
K.
,
Hossayni
,
S. A.
, and
Rad
,
J. A.
,
2016
, “
Operation Matrix Method Based on Bernstein Polynomials for Riccati Differential Equation and Volterra Population Model
,”
Appl. Math. Model.
,
40
(
2
), pp.
993
1011
.
10.
Hossayni
,
S. A.
,
Rad
,
J. A.
,
Parand
,
K.
, and
Abbasbandy
,
S.
,
2015
, “
Application of the Exact Operational Matrices for Solving the Emden-Fowler Equations Arising in Astrophysics
,”
Int. J. Ind. Math.
,
7
(
4
), pp. 351–374.
11.
Parand
,
K.
,
Dehghan
,
M.
, and
Taghavi
,
A.
,
2010
, “
Modified Generalized Laguerre Function Tau Method for Solving Laminar Viscous Flow: The Blasius Equation
,”
Int. J. Numer. Method. Heat Fluid Flow
,
20
(
7
), pp.
728
743
.
12.
Parand
,
K.
,
Delafkar
,
Z.
,
Pakniat
,
N.
,
Pirkhedri
,
A.
, and
Kazemnasab Haji
,
M.
,
2011
, “
Collocation Method Using Sinc and Rational Legendre Functions for Solving Volterra's Population Model
,”
Commun. Nonlinear Sci. Numer. Simul.
,
16
(
4
), pp.
1811
1819
.
13.
Funaro
,
D.
, and
Kavian
,
O.
,
1991
, “
Approximation of Some Diffusion Evolution Equations in Unbounded Domains by Hermite Functions
,”
Math. Comput.
,
57
(
196
), pp.
597
619
.
14.
Guo
,
B. Y.
, and
Shen
,
J.
,
2000
, “
Laguerre-Galerkin Method for Nonlinear Partial Differential Equations on a Semi-Infinite Interval
,”
Numer. Math.
,
86
(
4
), pp.
635
654
.
15.
Guo
,
B. Y.
,
1998
, “
Gegenbauer Approximation and Its Applications to Differential Equations on the Whole Line
,”
J. Math. Anal. Appl.
,
226
(1), pp.
180
206
.
16.
Guo
,
B. Y.
,
2000
, “
Jacobi Approximations in Certain Hilbert Spaces and Their Applications to Singular Differential Equations
,”
J. Math. Anal. Appl.
,
243
(
2
), pp.
373
408
.
17.
Rad
,
J. A.
,
Parand
,
K.
, and
Abbasbandy
,
S.
,
2015
, “
Local Weak Form Meshless Techniques Based on the Radial Point Interpolation (RPI) Method and Local Boundary Integral Equation (LBIE) Method to Evaluate European and American Options
,”
Commun. Nonlinear Sci. Numer. Simul.
,
22
(
1
), pp.
1178
1200
.
18.
Rad
,
J. A.
,
Parand
,
K.
, and
Ballestra
,
L. V.
,
2015
, “
Pricing European and American Options by Radial Basis Point Interpolation
,”
Appl. Math. Comput.
,
251
, pp.
363
377
.
19.
Delkhosh
,
M.
,
Delkhosh
,
M.
, and
Jamali
,
M.
,
2012
, “
Introduction to Green's Function and Its Numerical Solution
,”
Middle-East J. Sci. Res.
,
11
(
7
), pp.
974
981
.
20.
Parand
,
K.
, and
Delkhosh
,
M.
,
2017
, “
Solving the Nonlinear Schlomilch's Integral Equation Arising in Ionospheric Problems
,”
Afr. Mat.
,
28
(
3
), pp.
459
480
.
21.
Baharifard
,
F.
,
Kazem
,
S.
, and
Parand
,
K.
,
2016
, “
Rational and Exponential Legendre Tau Method on Steady Flow of a Third Grade Fluid in a Porous Half Space
,”
Int. J. Appl. Comput. Math.
,
2
(
4
), pp.
679
698
.
22.
Parand
,
K.
, and
Delkhosh
,
M.
,
2017
, “
Accurate Solution of the Thomas-Fermi Equation Using the Fractional Order of Rational Chebyshev Functions
,”
J. Comput. Appl. Math.
,
317
, pp.
624
642
.
23.
Parand
,
K.
,
Yousefi
,
H.
,
Delkhosh
,
M.
, and
Ghaderi
,
A.
,
2016
, “
A Novel Numerical Technique to Obtain an Accurate Solution to the Thomas-Fermi Equation
,”
Eur. Phys. J. Plus
,
131
(
7
), p.
228
.
24.
Adomian
,
G.
,
1988
, “
A Review of the Decomposition Method in Applied Mathematics
,”
J. Math. Anal. Appl.
,
135
(
2
), pp.
501
544
.
25.
Tatari
,
M.
,
Dehghan
,
M.
, and
Razzaghi
,
M.
,
2007
, “
Application of the Adomian Decomposition Method for the Fokker-Planck Equation
,”
Math. Comput. Model.
,
45
(5–6), pp.
639
650
.
26.
He
,
J. H.
,
1999
, “
Homotopy Perturbation Technique
,”
Comput. Method. Appl. Mech. Eng.
,
178
(3–4), pp.
257
262
.
27.
He
,
J. H.
,
1998
, “
Approximate Analytical Solution for Seepage Flow With Fractional Derivatives in Porous Media
,”
Comput. Method. Appl. Mech. Eng.
,
167
(1–2), pp.
57
68
.
28.
He
,
J. H.
,
2003
, “
Homotopy Perturbation Method: A New Nonlinear Analytical Technique
,”
Appl. Math. Comput.
,
135
(1), pp.
73
79
.
29.
Abbasbandy
,
S.
,
Modarrespoor
,
D.
,
Parand
,
K.
, and
Rad
,
J. A.
,
2013
, “
Analytical Solution of the Transpiration on the Boundary Layer Flow and Heat Transfer Over a Vertical Slender Cylinder
,”
Quaestiones Math.
,
36
(
3
), pp.
353
380
.
30.
He
,
J. H.
,
1997
, “
A New Approach to Nonlinear Partial Differential Equations
,”
Commun. Nonlinear Sci. Numer. Simul.
,
2
(
4
), pp.
230
235
.
31.
Shakeri
,
F.
, and
Dehghan
,
M.
,
2008
, “
Numerical Solution of the Klein-Gordon Equation Via He's Variational Iteration Method
,”
Nonlinear Dyn.
,
51
(1–2), pp.
89
97
.
32.
Delkhosh
,
M.
, and
Delkhosh
,
M.
,
2012
, “
Analytic Solutions of Some Self-Adjoint Equations by Using Variable Change Method and Its Applications
,”
J. Appl. Math.
,
2012
, p.
180806
.
33.
He
,
J. H.
, and
Wu
,
X. H.
,
2006
, “
Exp-Function Method for Nonlinear Wave Equations
,”
Chaos Solitons Fractals
,
30
(
3
), pp.
700
708
.
34.
Parand
,
K.
, and
Rad
,
J. A.
,
2012
, “
Exp-Function Method for Some Nonlinear PDE's and a Nonlinear ODE's
,”
J. King Saud Univ.-Sci.
,
24
(
1
), pp.
1
10
.
35.
Kidder
,
R. E.
,
1957
, “
Unsteady Flow of Gas Through a Semi-Infinite Porous Medium
,”
ASME J. Appl. Mech.
,
24
, pp.
329
332
.
36.
Na
,
T. Y.
,
1979
,
Computational Methods in Engineering Boundary Value Problems
,
Academic Press
,
New York
.
37.
Agarwal
,
R. P.
, and
O'Regan
,
D.
,
2002
, “
Infinite Interval Problems Modeling the Flow of a Gas Through a Semi-Infinite Porous Medium
,”
Stud. Appl. Math.
,
108
(
3
), pp.
245
257
.
38.
Baxley
,
J. V.
,
1990
, “
Existence and Uniqueness for Nonlinear Boundary Value Problems on Infinite Intervals
,”
J. Math. Anal. Appl.
,
147
(
1
), pp.
122
133
.
39.
Countryman
,
M.
, and
Kannan
,
R.
,
1994
, “
Nonlinear Boundary Value Problems on Semi-Infinite Intervals
,”
Comput. Math. Appl.
,
28
(10–12), pp.
59
75
.
40.
Panayotounakos
,
D. E.
,
Sotiropoulou
,
A. B.
,
Sotiropoulos
,
N. B.
, and
Manios
,
M.
,
2007
, “
Exact Analytic Solutions of the Porous Media and the Gas Pressure Diffusion ODEs in Non-Linear Mechanics
,”
Int. J. Non-Linear Mech.
,
42
(
1
), pp.
157
163
.
41.
Wazwaz
,
A. M.
,
2001
, “
The Modified Decomposition Method Applied to Unsteady Flow of Gas Through a Porous Medium
,”
Appl. Math. Comput.
,
118
(2–3), pp.
123
132
.
42.
Wazwaz
,
A. M.
,
2014
, “
The Variational Iteration Method for Solving Linear and Nonlinear ODEs and Scientific Models With Variable Coefficients
,”
Cent. Eur. J. Eng.
,
4
(1), pp.
64
71
.
43.
Parand
,
K.
,
Shahini
,
M.
, and
Taghavi
,
A.
,
2009
, “
Generalized Laguerre Polynomials and Rational Chebyshev Collocation Method for Solving Unsteady Gas Equation
,”
Int. J. Contemp. Math. Sci.
,
4
(
21
), pp.
1005
1011
.
44.
Parand
,
K.
,
Taghavi
,
A.
, and
Shahini
,
M.
,
2009
, “
Comparison Between Rational Chebyshev and Modified Generalized Laguerre Functions Pseudospectral Methods for Solving Lane-Emden and Unsteady Gas Equations
,”
Acta Phys. Pol. B
,
40
(
6
), p.
1749
.
45.
Parand
,
K.
, and
Nikarya
,
M.
,
2014
, “
Solving the Unsteady Isothermal Gas Through a Micro-Nano Porous Medium Via Bessel Function Collocation Method
,”
J. Comput. Theor. Nanosci.
,
11
(1), pp.
131
136
.
46.
Parand
,
K.
, and
Hemami
,
M.
,
2016
, “
Application of Meshfree Method Based on Compactly Supported Radial Basis Function for Solving Unsteady Isothermal Gas Through a Micro-Nano Porous Medium
,”
Iranian J. Sci. Tech. Trans. A
, epub.
47.
Taghavi
,
A.
,
Parand
,
K.
,
Shams
,
A.
, and
Sofloo
,
H. G.
,
2010
, “
Spectral Method for Solving Differential Equation of Gas Flow Through a Micro-Nano Porous Media
,”
J. Comput. Theor. Nanosci.
,
7
(
3
), pp.
542
546
.
48.
Taghavi
,
A.
,
Parand
,
K.
, and
Fani
,
H.
,
2009
, “
Lagrangian Method for Solving Unsteady Gas Equation
,”
Int. J. Math. Comput. Phys. Electr. Comp. Eng.
,
3
(
11
), pp.
991
995
.
49.
Noor
,
M. A.
, and
Mohyud-Din
,
S. T.
,
2009
, “
Variational Iteration Method for Unsteady Flow of Gas Through a Porous Medium Using He's Polynomials and Padé Approximate
,”
Comput. Math. Appl.
,
58
(11–12), pp.
2182
2189
.
50.
Khan
,
Y.
,
Faraz
,
N.
, and
Yildirim
,
A.
,
2010
, “
Series Solution for Unsteady Gas Equation Via MLDM-Padé Technique
,”
World Appl. Sci. J.
,
9
, pp.
27
31
.
51.
Rezaei
,
A. R.
,
Parand
,
K.
, and
Pirkhedri
,
A.
,
2011
, “
Numerical Study on Gas Flow Through a Micro-Nano Porous Media Based on Special Functions
,”
J. Comput. Theor. Nanosci.
,
8
(
2
), pp.
282
288
.
52.
Mohyud-Din
,
S. T.
,
Yildirim
,
A.
, and
Hosseini
,
M. M.
,
2010
, “
Variational Iteration Method for Initial and Boundary Value Problems Using He's Polynomials
,”
Int. J. Differ. Equations
,
2010
, p.
426213
.
53.
Maleki
,
M.
,
Hashim
,
I.
, and
Abbasbandy
,
S.
,
2012
, “
Analysis of IVPs and BVPs on Semi-Infinite Domains Via Collocation Methods
,”
J. Appl. Math.
,
2012
, p.
696574
.
54.
Rad
,
J. A.
,
Ghaderi
,
S. M.
, and
Parand
,
K.
,
2011
, “
Numerical and Analytical Solution of Gas Flow Through a Micro-Nano Porous Media: A Comparison
,”
J. Comput. Theor. Nanosci.
,
8
(
10
), pp.
2033
2041
.
55.
Abbasbandy
,
S.
,
2012
, “
Numerical Study on Gas Flow Through a Micro-Nano Porous Media
,”
Acta Phys. Pol. A
,
121
(
3
), pp.
581
585
.
56.
Upadhyay
,
S.
, and
Rai
,
K. N.
,
2014
, “
Collocation Method Applied to Unsteady Flow of Gas Through a Porous Medium
,”
Int. J. Appl. Math. Res.
,
3
(
3
), pp.
251
259
.
57.
Gheorghiu
,
C. I.
,
2015
, “
Laguerre Collocation Solution vs. Analytic Results for Singular Semilinear BVPs on the Half Line
,”
ROMAI J.
,
11
(
1
), pp.
69
87
.
58.
Iacono
,
R.
, and
Boyd
,
J. P.
,
2015
, “
The Kidder Equation: uxx+2xux/1αu=0
,”
Stud. Appl. Math.
,
135
(
1
), pp.
63
85
.
59.
Kazem
,
S.
,
Abbasbandy
,
S.
, and
Kumar
,
S.
,
2013
, “
Fractional-Order Legendre Functions for Solving Fractional-Order Differential Equations
,”
Appl. Math. Modell.
,
37
(
7
), pp.
5498
5510
.
60.
Szego
,
G.
,
1975
,
Orthogonal Polynomials
,
4th ed.
,
American Mathematical Society
,
Providence, RI
.
61.
Conte
,
S. D.
, and
de Boor
,
C.
,
1981
,
Elementary Numerical Analysis
,
McGraw-Hill
,
New York
.
62.
Bellman
,
R. E.
, and
Kalaba
,
R. E.
,
1965
,
Quasilinearization and Nonlinear Boundary-Value Problems
,
Elsevier
,
New York
.
63.
Kalaba
,
R.
,
1957
, “
On Nonlinear Differential Equations, the Maximum Operation and Monotone Convergence
,” RAND Corporation, Santa Monica, CA.
64.
Parand
,
K.
,
Ghasemi
,
M.
,
Rezazadeh
,
S.
,
Peiravi
,
A.
,
Ghorbanpour
,
A.
, and
Tavakoli Golpaygani
,
A.
,
2010
, “
Quasilinearization Approach for Solving Volterra's Population Model
,”
Appl. Comput. Math.
,
9
(
1
), pp.
95
103
.
65.
Krivec
,
R.
, and
Mandelzweig
,
V. B.
,
2008
, “
Quasilinearization Approach to Computations With Singular Potentials
,”
Comput. Phys. Commun.
,
179
(
12
), pp.
865
867
.
66.
Rezaei
,
A.
,
Baharifard
,
F.
, and
Parand
,
K.
,
2011
, “
Quasilinearization-Barycentric Approach for Numerical Investigation of the Boundary Value Fin Problem
,”
Int. J. Comput. Electr. Autom. Control Info. Eng.
,
5
(
2
), pp.
194
201
.
67.
Mandelzweig
,
V. B.
, and
Tabakin
,
F.
,
2001
, “
Quasilinearization Approach to Nonlinear Problems in Physics With Application to Nonlinear ODEs
,”
Comput. Phys. Commun.
,
141
(
2
), pp.
268
281
.
68.
Boyd
,
J. P.
,
2000
,
Chebyshev and Fourier Spectral Methods
,
2nd ed.
,
Dover Publications
,
Mineola, NY
.
69.
Canuto
,
C.
,
Hussaini
,
M. Y.
,
Quarteroni
,
A.
, and
Zang
,
T. A.
,
1987
,
Spectral Methods in Fluid Dynamic
,
Springer-Verlag
,
New York
.
70.
Guo
,
B. Y.
,
1998
,
Spectral Methods and Their Applications
,
World Scientific Publishing
,
Singapore
.
You do not currently have access to this content.