This paper investigates the possibility of energy generation via pendulum rotations when the source of vertical excitation is chaotic in nature. The investigations are conducted using an additional height-adjustable mechanism housing a secondary spring to optimize a configuration of experimental pendulum setup. Chaotic oscillations of the pendulum pivot are made possible at certain excitation conditions due to a piecewise-linear stiffness characteristic introduced by the modification. A velocity control method is applied to maintain the rotational motion of the pendulum as it interacts with the vertical oscillator. The control input is affected by a motor, and a generator is used to quantify the energy extraction. The experimental results imply the feasibility of employing a pendulum device in a chaotic vibratory environment for energy harvesting purpose.

References

References
1.
Leven
,
R. W.
, and
Koch
,
B. P.
,
1981
, “
Chaotic Behaviour of a Parametrically Excited Damped Pendulum
,”
Phys. Lett. A
,
86
(
2
), pp.
71
74
.
2.
Koch
,
B. P.
,
Leven
,
R. W.
,
Pompe
,
B.
, and
Wilke
,
C.
,
1983
, “
Experimental Evidence for Chaotic Behavior of a Parametrically Forced Pendulum
,”
Phys. Lett. A
,
96
(
5
), pp.
219
224
.
3.
Leven
,
R. W.
,
Pompe
,
B.
,
Wilke
,
C.
, and
Koch
,
B. P.
,
1985
, “
Experiments on Periodic and Chaotic Motions of a Parametrically Forced Pendulum
,”
Physica D
,
16
(
3
), pp.
371
384
.
4.
Bryant
,
P. J.
, and
Miles
,
J. W.
,
1990
, “
On a Periodically Forced, Weakly Damped Pendulum—Part 3: Vertical Forcing
,”
J. Aust. Math. Soc., Ser. B
,
32
(
1
), pp.
42
60
.
5.
Clifford
,
M. J.
, and
Bishop
,
S. R.
,
1994
, “
Approximating the Escape Zone for the Parametrically Excited Pendulum
,”
J. Sound Vib.
,
172
(
4
), pp.
572
576
.
6.
Clifford
,
M. J.
, and
Bishop
,
S. R.
,
1996
, “
Locating Oscillatory Orbits of the Parametrically-Excited Pendulum
,”
J. Aust. Math. Soc., Ser. B
,
37
(
3
), pp.
309
319
.
7.
Bishop
,
S. R.
, and
Clifford
,
M. J.
,
1996
, “
Zones of Chaotic Behavior in the Parametrically Excited Pendulum
,”
J. Sound Vib.
,
189
(
1
), pp.
142
147
.
8.
Koch
,
B. P.
, and
Leven
,
R. W.
,
1985
, “
Subharmonic and Homoclinic Bifurcations in a Parametrically Forced Pendulum
,”
Physica D
,
16
(
1
), pp.
1
13
.
9.
Szempliska-Stupnicka
,
W.
,
Tyrkiel
,
E.
, and
Zubrzycki
,
A.
,
2000
, “
The Global Bifurcations That Lead to Transient Tumbling Chaos in a Parametrically Driven Pendulum
,”
Int. J. Bifurcation Chaos
,
10
(9), pp.
2161
2175
.
10.
Szempliska-Stupnicka
,
W.
, and
Tyrkiel
,
E.
,
2002
, “
The Oscillation-Rotation Attractors in the Forced Pendulum and Their Peculiar Properties
,”
Int. J. Bifurcation Chaos
,
12
(
01
), pp.
159
168
.
11.
Clifford
,
M. J.
, and
Bishop
,
S. R.
,
1995
, “
Rotating Periodic Orbits of the Parametrically Excited Pendulum
,”
Phys. Lett. A
,
201
(2–3), pp.
191
196
.
12.
Garira
,
W.
, and
Bishop
,
S. R.
,
2003
, “
Rotating Solutions of the Parametrically Excited Pendulum
,”
J. Sound Vib.
,
263
(
1
), pp.
233
239
.
13.
Xu
,
X.
,
Wiercigroch
,
M.
, and
Cartmell
,
M. P.
,
2005
, “
Rotating Orbits of a Parametrically-Excited Pendulum
,”
Chaos, Solitons Fractals
,
23
(
5
), pp.
1537
1548
.
14.
Xu
,
X.
, and
Wiercigroch
,
M.
,
2007
, “
Approximate Analytical Solutions for Oscillatory and Rotational Motion of a Parametric Pendulum
,”
Nonlinear Dyn.
,
47
(1–3), pp.
311
320
.
15.
Lenci
,
S.
,
Pavlovskaia
,
E.
,
Rega
,
G.
, and
Wiercigroch
,
M.
,
2008
, “
Rotating Solutions and Stability of Parametric Pendulum by Perturbation Method
,”
J. Sound Vib.
,
310
(1–2), pp.
243
259
.
16.
Xu
,
X.
,
2005
, “
Nonlinear Dynamics of Parametric Pendulum for Wave Energy Extraction
,”
Ph.D. thesis
, University of Aberdeen, Aberdeen, UK.
17.
Xu
,
X.
,
Pavlovskaia
,
E.
,
Wiercigroch
,
M.
,
Romeo
,
F.
, and
Lenci
,
S.
,
2007
, “
Dynamic Interactions Between Parametric Pendulum and Electro‐Dynamical Shaker
,”
J. Appl. Math. Mech.
,
87
(2), pp.
172
186
.
18.
Lenci
,
S.
, and
Rega
,
G.
,
2011
, “
Experimental Versus Theoretical Robustness of Rotating Solutions in a Parametrically Excited Pendulum: A Dynamical Integrity Perspective
,”
Physica D
,
240
(9–10), pp.
814
824
.
19.
Horton
,
B.
,
Sieber
,
J.
,
Thompson
,
J. M. T.
, and
Wiercigroch
,
M.
,
2011
, “
Dynamics of the Nearly Parametric Pendulum
,”
Int. J. Non-Linear Mech.
,
46
(
2
), pp.
436
442
.
20.
Pavlovskaia
,
E.
,
Horton
,
B.
,
Wiercigroch
,
M.
,
Lenci
,
S.
, and
Rega
,
G.
,
2012
, “
Approximate Rotational Solutions of Pendulum Under Combined Vertical and Horizontal Excitation
,”
Int. J. Bifurcation Chaos
,
22
(
05
), p.
1250100
.
21.
Yokoi
,
Y.
, and
Hikihara
,
T.
,
2011
, “
Tolerance of Start-Up Control of Rotation in Parametric Pendulum by Delayed Feedback
,”
Phys. Lett. A
,
375
(
17
), pp.
1779
1783
.
22.
Vaziri
,
V.
,
Najdecka
,
A.
, and
Wiercigroch
,
M.
,
2014
, “
Experimental Control for Initiating and Maintaining Rotation of Parametric Pendulum
,”
Eur. Phys. J. Spec. Top.
,
223
(
4
), pp.
795
812
.
23.
De Paula
,
A. S.
,
Savi
,
M. A.
,
Vaziri
,
V.
,
Pavlovskaia
,
E.
, and
Wiercigroch
,
M.
,
2017
, “
Experimental Bifurcation Control of a Parametric Pendulum
,”
J. Vib. Control
,
23
(
14
), pp.
2256
2268
.
24.
De Paula
,
A. S.
,
Savi
,
M. A.
,
Wiercigroch
,
M.
, and
Pavlovskaia
,
E.
,
2012
, “
Bifurcation Control of a Parametric Pendulum
,”
Int. J. Bifurcation Chaos
,
22
(
05
), p.
1250111
.
25.
Najdecka
,
A.
,
Narayanan
,
S.
, and
Wiercigroch
,
M.
,
2015
, “
Rotary Motion of the Parametric and Planar Pendulum Under Stochastic Wave Excitation
,”
Int. J. Non-Linear Mech.
,
71
, pp.
30
38
.
26.
Yurchenko
,
D.
,
Naess
,
A.
, and
Alevras
,
P.
,
2013
, “
Pendulum's Rotational Motion Governed by a Stochastic Mathieu Equation
,”
Probab. Eng. Mech.
,
31
, pp.
12
18
.
27.
Yurchenko
,
D.
, and
Alevras
,
P.
,
2013
, “
Stochastic Dynamics of a Parametrically Base Excited Rotating Pendulum
,”
Procedia IUTAM
,
6
, pp.
160
168
.
28.
Andreeva
,
T.
,
Alevras
,
P.
,
Naess
,
A.
, and
Yurchenko
,
D.
,
2016
, “
Dynamics of a Parametric Rotating Pendulum Under a Realistic Wave Profile
,”
Int. J. Dyn. Control
,
4
(
2
), pp.
233
238
.
29.
Najdecka
,
A.
,
2013
, “
Rotating Dynamics of Pendula Systems for Energy Harvesting From Ambient Vibrations
,”
Ph.D. thesis
, University of Aberdeen, Aberdeen, UK.
30.
Vaziri
,
V.
,
2015
, “
Dynamics and Control of Nonlinear Engineering Systems
,”
Ph.D. thesis
, University of Aberdeen, Aberdeen, UK.
31.
Teh
,
S.-H.
,
Woo
,
K.-C.
, and
Demrdash
,
H.
,
2016
, “
Rotating Orbits of Pendulum in Stochastic Excitation
,”
J. Theor. Appl. Mech.
,
54
(
3
), pp.
717
730
.
32.
Reguera
,
F.
,
Dotti
,
F. E.
, and
Machado
,
S. P.
,
2016
, “
Rotation Control of a Parametrically Excited Pendulum by Adjusting Its Length
,”
Mech. Res. Commun.
,
72
, pp.
74
80
.
33.
Moon
,
F. C.
, and
Holmes
,
P. J.
,
1979
, “
A Magnetoelastic Strange Attractor
,”
J. Sound Vib.
,
65
(
2
), pp.
275
296
.
34.
Hongler
,
M.-O.
, and
Streit
,
L.
,
1988
, “
On the Origin of Chaos in Gearbox Models
,”
Physica D
,
29
(
3
), pp.
402
408
.
35.
Hinrichs
,
N.
,
Oestreich
,
M.
, and
Popp
,
K.
,
1997
, “
Dynamics of Oscillators With Impact and Friction
,”
Chaos, Solitons Fractals
,
8
(
4
), pp.
535
558
.
36.
Worden
,
K.
, and
Tomlinson
,
G. R.
,
2000
,
Nonlinearity in Structural Dynamics: Detection, Identification and Modelling
,
CRC Press
,
Boca Raton, FL
.
37.
Teh
,
S.-H.
,
Chan
,
K.-H.
,
Woo
,
K.-C.
, and
Demrdash
,
H.
,
2015
, “
Rotating a Pendulum With an Electromechanical Excitation
,”
Int. J. Non-Linear Mech.
,
70
, pp.
73
83
.
38.
Mendrela
,
E. A.
, and
Pudlowski
,
Z. J.
,
1992
, “
Transients and Dynamics in a Linear Reluctance Self-Oscillating Motor
,”
IEEE Trans. Energy Convers.
,
7
(
1
), pp.
183
191
.
39.
Teh
,
S.-H.
,
2016
, “
Non-Linear Dynamics of Pendulum Via Periodic and Aperiodic Excitation
,” Ph.D. thesis, University of Nottingham Malaysia Campus, Semenyih, Malaysia.
40.
Moon
,
F. C.
,
2004
,
Chaotic Vibrations: An Introduction for Applied Scientists and Engineers
,
Wiley
,
Hoboken, NJ
.
41.
Sprott, J. C.
, and
Maus, A.
,
2012
, “
Lag Space
,” University of Wisconsin - Madison, Madison, WI, accessed Sept. 8, 2017, http://sprott.physics.wisc.edu/chaos/maus/lagspace.htm
42.
Maus
,
A.
, and
Sprott
,
J. C.
,
2013
, “
Evaluating Lyapunov Exponent Spectra With Neural Networks
,”
Chaos, Solitons Fractals
,
51
, pp.
13
21
.
You do not currently have access to this content.