This paper considers the robust synchronization of chaotic systems in the presence of nonsymmetric input saturation constraints. The synchronization happens between two nonlinear master and slave systems in the face of model uncertainties and external disturbances. A new adaptive sliding mode controller is designed in a way that the robust synchronization occurs. In this regard, a theorem is proposed, and according to the Lyapunov approach the adaptation laws are derived, and it is proved that the synchronization error converges to zero despite of the uncertain terms in master and slave systems and nonsymmetric input saturation constraints. Finally, the proposed method is applied on chaotic gyro systems to show its applicability. Computer simulations verify the theoretical results and also show the effective performance of the proposed controller.

References

References
1.
Pecora
,
L. M.
, and
Carroll
,
T. L.
,
1990
, “
Synchronization in Chaotic Systems
,”
Phys. Rev. Lett.
,
64
(
8
), pp.
821
824
.
2.
Skinner
,
J. E.
,
Molnar
,
M.
,
Vybiral
,
T.
, and
Mitra
,
M.
,
1992
, “
Application of Chaos Theory to Biology and Medicine
,”
Integr. Physiol. Behav. Sci.
,
27
(
1
), pp.
39
53
.
3.
Yang
,
X.
,
Cao
,
J.
, and
Yang
,
Z.
,
2013
, “
Synchronization of Coupled Reaction-Diffusion Neural Networks With Time-Varying Delays Via Pinning-Impulsive Controller
,”
SIAM J. Control Optim.
,
51
(
5
), pp.
3486
3510
.
4.
Morcillo
,
J. D.
,
Burbano
,
D.
, and
Angulo
,
F.
,
2016
, “
Adaptive Ramp Technique for Controlling Chaos and Subharmonic Oscillations in DC–DC Power Converters
,”
IEEE Trans. Power Electron.
,
31
(
7
), pp.
5330
5343
.
5.
Liu
,
Y.
,
Li
,
L.
, and
Feng
,
Y.
,
2016
, “
Finite-Time Synchronization for High-Dimensional Chaotic Systems and Its Application to Secure Communication
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
5
), p.
051028
.
6.
Lu
,
J.
,
Kurths
,
J.
,
Cao
,
J.
,
Mahdavi
,
N.
, and
Huang
,
C.
,
2012
, “
Synchronization Control for Nonlinear Stochastic Dynamical Networks: Pinning Impulsive Strategy
,”
IEEE Trans. Neural Networks Learn. Syst.
,
23
(
2
), pp.
285
292
.
7.
Cao
,
L.
, and
Chen
,
X.
,
2015
, “
Input–Output Linearization Minimum Sliding Mode Error Feedback Control for Synchronization of Chaotic System
,”
Proc. Inst. Mech. Eng., Part I
,
229
(
8
), pp.
685
699
.
8.
Yang
,
S.
,
Li
,
C.
, and
Huang
,
T.
,
2016
, “
Exponential Stabilization and Synchronization for Fuzzy Model of Memristive Neural Networks by Periodically Intermittent Control
,”
Neural Networks
,
75
, pp.
162
172
.
9.
Abbasi
,
Y.
,
Moosavian
,
S. A. A.
, and
Novinzadeh
,
A. B.
,
2016
, “
Formation Control of Aerial Robots Using Virtual Structure and New Fuzzy-Based Self-Tuning Synchronization
,”
Trans. Inst. Meas. Control
, epub.
10.
Singh
,
A. K.
,
Yadav
,
V. K.
, and
Das
,
S.
,
2017
, “
Dual Combination Synchronization of the Fractional Order Complex Chaotic Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
12
(
1
), p.
011017
.
11.
Xing-Yuan
,
W.
, and
Hao
,
Z.
,
2013
, “
Backstepping-Based Lag Synchronization of a Complex Permanent Magnet Synchronous Motor System
,”
Chin. Phys. B
,
22
(
4
), p.
048902
.
12.
Mohammadpour
,
S.
, and
Binazadeh
,
T.
,
2017
, “
Observer-Based Synchronization of Uncertain Chaotic Systems Subject to Input Saturation
,”
Trans. Inst. Meas. Control
, epub.
13.
Bagheri
,
P.
,
Shahrokhi
,
M.
, and
Salarieh
,
H.
,
2017
, “
Adaptive Observer-Based Synchronization of Two Non-Identical Chaotic Systems With Unknown Parameters
,”
J. Vib. Control
,
23
(
3
), pp.
389
399
.
14.
Luo
,
R.
, and
Zeng
,
Y.
,
2016
, “
The Control and Synchronization of a Class of Chaotic Systems With Output Variable and External Disturbance
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
5
), p.
051011
.
15.
Aghababa
,
M. P.
, and
Aghababa
,
H. P.
,
2012
, “
A General Nonlinear Adaptive Control Scheme for Finite-Time Synchronization of Chaotic Systems With Uncertain Parameters and Nonlinear Inputs
,”
Nonlinear Dyn.
,
69
(
4
), pp.
1903
1914
.
16.
Aghababa
,
M. P.
, and
Aghababa
,
H. P.
,
2014
, “
Stabilization of Gyrostat System With Dead-Zone Nonlinearity in Control Input
,”
J. Vib. Control
,
20
(
15
), pp.
2378
2388
.
17.
Wang
,
N.
,
Qian
,
C.
,
Sun
,
J. C.
, and
Liu
,
Y. C.
,
2016
, “
Adaptive Robust Finite-Time Trajectory Tracking Control of Fully Actuated Marine Surface Vehicles
,”
IEEE Trans. Control Syst. Technol.
,
24
(
4
), pp.
1454
1462
.
18.
Yu
,
W.
,
DeLellis
,
P.
,
Chen
,
G.
,
di Bernardo
,
M.
, and
Kurths
,
J.
,
2012
, “
Distributed Adaptive Control of Synchronization in Complex Networks
,”
IEEE Trans. Autom. Control
,
57
(
8
), pp.
2153
2158
.
19.
Zhao
,
Y. P.
,
He
,
P.
,
Saberi Nik
,
H.
, and
Ren
,
J.
,
2015
, “
Robust Adaptive Synchronization of Uncertain Complex Networks With Multiple Time-Varying Coupled Delays
,”
Complexity
,
20
(
6
), pp.
62
73
.
20.
Kebriaei
,
H.
, and
Yazdanpanah
,
M. J.
,
2010
, “
Robust Adaptive Synchronization of Different Uncertain Chaotic Systems Subject to Input Nonlinearity
,”
Commun. Nonlinear Sci. Numer. Simul.
,
15
(
2
), pp.
430
441
.
21.
Jaramillo-Lopez
,
F.
,
Kenne
,
G.
, and
Lamnabhi-Lagarrigue
,
F.
,
2017
, “
Adaptive Control for a Class of Uncertain Nonlinear Systems: Application to Photovoltaic Control Systems
,”
IEEE Trans. Autom. Control
,
62
(
1
), pp.
393
398
.
22.
Binazadeh
,
T.
, and
Bahmani
,
M.
,
2016
, “
Robust Time-Varying Output Tracking Control in the Presence of Actuator Saturation
,”
Trans. Inst. Meas. Control
, epub.
23.
Binazadeh
,
T.
, and
Bahmani
,
M.
,
2017
, “
Design of Robust Controller for a Class of Uncertain Discrete-Time Systems Subject to Actuator Saturation
,”
IEEE Trans. Autom. Control
,
62
(
3
), pp.
1505
1510
.
24.
Hao
,
L. Y.
, and
Yang
,
G. H.
,
2013
, “
Fault Tolerant Control for a Class of Uncertain Chaotic Systems With Actuator Saturation
,”
Nonlinear Dyn.
,
73
(
4
), pp.
2133
2147
.
25.
Gußner
,
T.
,
Jost
,
M.
, and
Adamy
,
J.
,
2012
, “
Controller Design for a Class of Nonlinear Systems With Input Saturation Using Convex Optimization
,”
Syst. Control Lett.
,
61
(
1
), pp.
258
265
.
26.
Ran
,
M.
,
Wang
,
Q.
, and
Dong
,
C.
,
2016
, “
Stabilization of a Class of Nonlinear Systems With Actuator Saturation Via Active Disturbance Rejection Control
,”
Automatica
,
63
, pp.
302
310
.
27.
Wang
,
Q.
,
Ran
,
M.
, and
Dong
,
C.
,
2016
, “
An Analysis and Design Method for a Class of Nonlinear Systems With Nested Saturations
,”
Int. J. Control
,
89
(
8
), pp.
1711
1724
.
28.
Silva
,
J. M.
,
Oliveira
,
M. Z.
,
Coutinho
,
D.
, and
Tarbouriech
,
S.
,
2014
, “
Static Anti‐Windup Design for a Class of Nonlinear Systems
,”
Int. J. Robust Nonlinear Control
,
24
(
5
), pp.
793
810
.
29.
Iqbal
,
M.
,
Rehan
,
M.
,
Hong
,
K. S.
, and
Khaliq
,
A.
,
2015
, “
Sector-Condition-Based Results for Adaptive Control and Synchronization of Chaotic Systems Under Input Saturation
,”
Chaos, Solitons Fractals
,
77
, pp.
158
169
.
30.
Hu
,
Q.
,
2008
, “
Adaptive Output Feedback Sliding-Mode Manoeuvring and Vibration Control of Flexible Spacecraft With Input Saturation
,”
IET Control Theory Appl.
,
2
(
6
), pp.
467
478
.
31.
Khalil
,
H. K.
,
2014
,
Nonlinear Control
,
Prentice Hall
, Upper Saddle River, NJ.
32.
Binazadeh
,
T.
,
2016
, “
Finite-Time Tracker Design for Uncertain Nonlinear Fractional-Order Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
4
), p.
041028
.
33.
Chenarani
,
H.
, and
Binazadeh
,
T.
,
2017
, “
Flexible Structure Control of Unmatched Uncertain Nonlinear Systems Via Passivity-Based Sliding Mode Technique
,”
Iran. J. Sci. Technol., Trans. Electr. Eng.
,
41
(
1
), pp.
1
11
.
34.
Binazadeh
,
T.
, and
Yousefi
,
M.
,
2017
, “
Designing a Cascade-Control Structure Using Fractional-Order Controllers: Time-Delay Fractional-Order Proportional-Derivative Controller and Fractional-Order Sliding-Mode Controller
,”
J. Eng. Mech.
,
143
(
7
), p.
04017037
.
35.
Yousefi
,
M.
, and
Binazadeh
,
T.
,
2017
, “
Delay-Independent Sliding Mode Control of Time-Delay Linear Fractional Order Systems
,”
Trans. Inst. Meas. Control
, epub.
36.
Binazadeh
,
T.
, and
Shafiei
,
M. H.
,
2013
, “
Output Tracking of Uncertain Fractional-Order Nonlinear Systems Via a Novel Fractional-Order Sliding Mode Approach
,”
Mechatronics
,
23
(
7
), pp.
888
892
.
37.
Behjameh
,
M. R.
,
Delavari
,
H.
, and
Vali
,
A.
,
2015
, “
Global Finite Time Synchronization of Two Nonlinear Chaotic Gyros Using High Order Sliding Mode Control
,”
J. Appl. Comput. Mech.
,
1
(
1
), pp.
26
34
.
38.
Lei
,
Y.
,
Xu
,
W.
, and
Zheng
,
H.
,
2005
, “
Synchronization of Two Chaotic Nonlinear Gyros Using Active Control
,”
Phys. Lett. A
,
343
(
1–3
), pp.
153
158
.
You do not currently have access to this content.