In this study, we describe the fractional convection operator for the first time and present its discrete form with second-order convergence. A numerical scheme for the fractional-convection–diffusion equation is also constructed in order to get insight into the fractional convection behavior visually. Then, we study the fractional-convection-dominated diffusion equation which has never been considered, where the diffusion is normal and is characterized by the Laplacian. The interesting fractional convection phenomena are observed through numerical simulation. Moreover, we investigate the fractional-convection-dominated-diffusion equation which is studied for the first time either, where the convection and the diffusion are both in the fractional sense. The corresponding fractional convection phenomena are displayed via computer graphics as well.

References

References
1.
Rossikhin
,
Y. A.
, and
Shitikova
,
M. V.
,
1997
, “
Applications of Fractional Calculus to Dynamic Problems of Linear and Nonlinear Hereditary Mechanics of Solids
,”
ASME Appl. Mech. Rev.
,
50
(
1
), pp.
15
67
.
2.
Rossikhin
,
Y. A.
, and
Shitikova
,
M. V.
,
2010
, “
Application of Fractional Calculus for Dynamic Problems of Solid Mechanics: Novel Trends and Recent Results
,”
ASME Appl. Mech. Rev.
,
63
(
1
), p.
010801
.
3.
Perdikaris
,
P.
,
Grinberg
,
L.
, and
Karniadakis
,
G. E.
,
2015
, “
Fractional-Order Viscoelasticity in One-Dimensional Blood Flow Models
,”
Ann. Biomed. Eng.
,
43
(
6
), pp.
1432
1442
.
4.
Li
,
C. P.
, and
Ma
,
L.
,
2016
, “
Lyapunov-Schmidt Reduction for Fractional Differential Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
5
), p.
051022
.
5.
Neamaty
,
A.
,
Agheli
,
B.
, and
Darzi
,
R.
,
2015
, “
Numerical Solution of High-Order Fractional Volterra Integro-Differential Equations by Variational Homotopy Perturbation Iteration Method
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
6
), p.
061023
.
6.
Moghaddam
,
B. P.
,
Yaghoobi
,
Sh.
, and
Tenreiro Machado
,
J. A.
,
2016
, “
An Extended Predictor-Corrector Algorithm for Variable-Order Fractional Delay Differential Equations
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
6
), p.
061001
.
7.
Kumar
,
D.
,
Singh
,
J.
, and
Baleanu
,
D.
,
2016
, “
Numerical Computation of a Fractional Model of Differential-Difference Equation
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
6
), p.
061004
.
8.
Ding
,
H. F.
, and
Li
,
C. P.
,
2017
, “
Fractional-Compact Numerical Algorithms for Riesz Spatial Fractional Reaction-Dispersion Equations
,”
Fract. Calculus Appl. Anal.
,
20
(
3
), pp.
722
764
.
9.
Ding
,
H. F.
, and
Li
,
C. P.
,
2017
, “
High-Order Algorithms for Riesz Derivative and Their Applications (V)
,”
Numer. Methods Partial Differ. Equations
,
33
(
5
), pp.
1754
1794
.
10.
Li
,
C. P.
, and
Chen
,
A.
,
2017
, “
Numerical Methods for Fractional Partial Differential Equations
,”
Int. J. Comput. Math.
, epub.
11.
Metzler
,
R.
, and
Klafter
,
J.
,
2000
, “
The Random Walk's Guide to Anomalous Diffusion: A Fractional Dynamics Approach
,”
Phys. Rep.
,
339
(
1
), pp.
1
77
.
12.
Gafiychuk
,
V.
, and
Datsko
,
B.
,
2012
, “
Different Types of Instabilities and Complex Dynamics in Reaction-Diffusion Systems With Fractional Derivatives
,”
ASME J. Comput. Nonlinear Dyn.
,
7
(
3
), p.
031001
.
13.
Crouseilles
,
N.
,
Hivert
,
H.
, and
Lemou
,
M.
,
2016
, “
Numerical Schemes for Kinetic Equations in the Anomalous Diffusion Limit—Part II: Degenerate Collision Frequency
,”
SIAM J. Sci. Comput.
,
38
(
4
), pp.
A2464
A2491
.
14.
Chen
,
W.
,
2006
, “
Time-Space Fabric Underlying Anomalous Diffusion
,”
Chaos, Solitons Fractals
,
28
(
4
), pp.
923
929
.
15.
Chen
,
W.
,
Sun
,
H. G.
, and
Zhang
,
X. D.
,
2010
, “
Anomalous Diffusion Modeling by Fractal and Fractional Derivatives
,”
Comput. Math. Appl.
,
59
(
5
), pp.
1754
1758
.
16.
Wang
,
F. J.
, and
Chen
,
W.
,
2016
, “
Accurate Empirical Formulas for the Evaluation of Origin Intensity Factor in Singular Boundary Method Using Time-Dependent Diffusion Fundamental Solution
,”
Int. J. Heat Mass Transfer
,
103
, pp.
360
369
.
17.
Jin
,
B. T.
,
Lazarov
,
R.
, and
Zhou
,
Z.
,
2016
, “
A Petrov–Galaerkin Finite Element Method for Fractional Convection-Diffusion Equations
,”
SIAM J. Numer. Anal.
,
54
(
1
), pp.
481
503
.
18.
Celik
,
C.
, and
Duman
,
M.
,
2012
, “
Crank-Nicolson Method for the Fractional Diffusion Equation With the Riesz Fractional Derivative
,”
J. Comput. Phys.
,
231
(
4
), pp.
1743
1750
.
19.
Li
,
C. P.
, and
Zeng
,
F. H.
,
2015
,
Numerical Methods for Fractional Calculus
,
CRC Press
,
Boca Raton, FL
.
20.
Perdikaris
,
P.
, and
Karniadakis
,
G. E.
,
2014
, “
Fractional-Order Viscoelasticity in One-Dimensional Blood Flow Models
,”
Ann. Biomed. Eng.
,
42
(
5
), pp.
1012
1023
.
21.
Benson
,
D. A.
,
Wheatcraft
,
S. W.
, and
Meerschaert
,
M. M.
,
2000
, “
Application of a Fractional Advection-Dispersion Equation
,”
Water Resour. Res.
,
36
(
6
), pp.
1403
1412
.
22.
Samko
,
S. G.
,
Kilbas
,
A. A.
, and
Marichev
,
O. I.
,
1993
,
Fractional Integrals and Derivatives
, Taylor & Francis, Abingdon, UK.
23.
Zaslavsky
,
G. M.
,
2005
,
Hamiltonian Chaos and Fractional Dynamics
,
Oxford University Press
,
Oxford, UK
.
24.
Benson
,
D. A.
,
1998
, “
The Fractional Advection-Dispersion Equation: Development and Application
,”
Doctoral Dissertation
, University of Nevada, Reno, Reno, NV.
25.
Cushman
,
J. H.
,
1990
,
Dynamics of Fluids in Hierarchical Porous Media
,
Academic Press
,
London
.
26.
Ortigueira
,
M. D.
,
2006
, “
Riesz Potential Operators and Inverses Via Fractional Centred Derivatives
,”
Int. J. Math. Math. Sci.
,
2006
, p.
48391
.
27.
Cushman
,
J. H.
, and
Ginn
,
T. R.
,
2000
, “
Fractional Advection-Dispersion Equation: A Classical Mass Balance With Convolution-Fickian Flux
,”
Water Resour. Res.
,
36
(
12
), pp.
3763
3766
.
28.
Ding
,
H. F.
,
Li
,
C. P.
, and
Chen
,
Y. Q.
,
2015
, “
High-Order Algorithms for Riesz Derivative and Their Applications (II)
,”
J. Comput. Phys.
,
293
, pp.
218
237
.
You do not currently have access to this content.