In this paper, we investigate the linear and nonlinear response of shape memory alloy (SMA)-based Duffing and quadratic oscillator under large deflection conditions. In this study, we first present thermomechanical constitutive modeling of SMA with a single degree-of-freedom system. Subsequently, we solve equation to obtain linear frequency and nonlinear frequency response using the method of harmonic balance and validate it with numerical solution as well as averaging method under the isothermal condition. However, for nonisothermal condition, we analyze the influence of cubic and quadratic nonlinearity on nonlinear response based on method of harmonic balance. Analysis of results leads to various ways of controlling the nature and extent of nonlinear response of SMA-based oscillators. Such findings can be effectively used to control external vibration of different systems.

References

References
1.
Ge
,
G.
,
2014
, “
Response of a Shape Memory Alloy Beam Model Under Narrow Band Noise Excitation
,”
Math. Probl. Eng.
,
2014
, p.
985467
.
2.
Otsuka
,
K.
, and
Wayman
,
C. M.
,
1999
,
Shape Memory Materials
,
Cambridge University Press
, Cambridge, UK.
3.
Cveticanin
,
L.
,
2004
, “
Vibrations of the Nonlinear Oscillator With Quadratic Nonlinearity
,”
Physica A
,
341
, pp.
123
135
.
4.
Vestroni
,
F.
, and
Capecchi
,
D.
,
1999
, “
Coupling and Resonance Phenomena in Dynamic Systems With Hysteresis
,”
IUTAM Symposium on New Applications of Nonlinear and Chaotic Dynamics in Mechanics
, Ithaca, NY, July 27–Aug. 1, pp.
203
212
.
5.
Saadat
,
S.
,
Salichs
,
J.
,
Noori
,
M.
,
Hou
,
Z.
,
Davoodi
,
H.
,
Bar-On
,
I.
,
Suzuki
,
Y.
, and
Masuda
,
A.
,
2002
, “
An Overview of Vibration and Seismic Applications of NiTi Shape Memory Alloy
,”
Smart Mater. Struct.
,
11
(
2
), p.
218
.
6.
Dimitris
,
C. L.
,
2008
,
Shape Memory Alloys: Modeling and Engineering Applications
,
Springer-Verlag
, New York.
7.
Bernardini
,
D.
, and
Vestroni
,
F.
,
2003
, “
Non-Isothermal Oscillations of Pseudoelastic Devices
,”
Int. J. Non-Linear Mech.
,
38
(
9
), pp.
1297
1313
.
8.
Lacarbonara
,
W.
,
Bernardini
,
D.
, and
Vestroni
,
F.
,
2004
, “
Nonlinear Thermomechanical Oscillations of Shape-Memory Devices
,”
Int. J. Solids Struct.
,
41
(
5
), pp.
1209
1234
.
9.
Bernardini
,
D.
, and
Rega
,
G.
,
2010
, “
The Influence of Model Parameters and of the Thermomechanical Coupling on the Behavior of Shape Memory Devices
,”
Int. J. Non-Linear Mech.
,
45
(
10
), pp.
933
946
.
10.
Bernardini
,
D.
,
2001
, “
On the Macroscopic Free Energy Functions for Shape Memory Alloys
,”
J. Mech. Phys. Solids
,
49
(
4
), pp.
813
837
.
11.
Ivshin
,
Y.
, and
Pence
,
T. J.
,
1994
, “
A Thermomechanical Model for a One Variant Shape Memory Material
,”
J. Intell. Mater. Syst. Struct.
,
5
(
4
), pp.
455
473
.
12.
Moussa
,
M. O.
,
Moumni
,
Z.
,
Doar
,
O.
,
Touz
,
C.
, and
Zaki
,
W.
,
2012
, “
Non-Linear Dynamic Thermomechanical Behaviour of Shape Memory Alloys
,”
J. Intell. Mater. Syst. Struct.
,
23
(
14
), pp.
1593
1611
.
13.
Salichs
,
J.
,
Hou
,
Z.
, and
Noori
,
M.
,
2001
, “
Vibration Suppression of Structures Using Passive Shape Memory Alloy Energy Dissipation Devices
,”
J. Intell. Mater. Syst. Struct.
,
12
(
10
), pp.
671
680
.
14.
Thomson
,
P.
,
Balas
,
G. J.
, and
Leo
,
P. H.
,
1995
, “
The Use of Shape Memory Alloys for Passive Structural Damping
,”
Smart Mater. Struct.
,
4
(
1
), p.
36
.
15.
Clark
,
P. W.
,
Aiken
, I
. D.
,
Kelly
,
J. M.
,
Higashino
,
M.
, and
Krumme
,
R.
,
1995
, “
Experimental and Analytical Studies of Shape-Memory Alloy Dampers for Structural Control
,” Smart Structures and Materials '95, San Diego, CA, Feb. 26–Mar. 3, Paper No.
2445
.
16.
Urabe
,
M.
,
1965
, “
Galerkin's Procedure for Nonlinear Periodic Systems
,”
Arch. Ration. Mech. Anal.
,
20
(
2
), pp.
120
152
.
17.
Nayfeh
,
A. H.
, and
Balachandran
,
B.
,
1995
,
Applied Nonlinear Dynamics: Analytical, Computational, and Experimental Methods
(Wiley Series in Nonlinear Sciences),
Wiley
,
New York
.
18.
Oberaigner
,
E. R.
,
Tanaka
,
K.
, and
Fischer
,
F. D.
,
1996
, “
Investigation of the Damping Behavior of a Vibrating Shape Memory Alloy Rod Using a Micromechanical Model
,”
Smart Mater. Struct.
,
5
(
4
), p.
456
.
19.
Raniecki
,
B.
,
Lexcellent
,
C.
, and
Tanaka
,
K.
,
1992
, “
Thermodynamic Models of Pseudoelastic Behaviour of Shape Memory Alloys
,”
Arch. Mech.
,
44
(3), pp.
261
284
.
20.
Kovacic
,
I.
, and
Brennan
,
M. J.
,
2011
,
The Duffing Equation: Nonlinear Oscillators and Their Behaviour
,
Wiley
, Chichester, UK.
21.
Nayfeh
,
A. H.
, and
Sanchez
,
N. E.
,
1989
, “
Bifurcations in a Forced Softening Duffing Oscillator
,”
Int. J. Non-Linear Mech.
,
24
(
6
), pp.
483
493
.
22.
Hu
,
H.
,
2006
, “
Solution of a Quadratic Nonlinear Oscillator by the Method of Harmonic Balance
,”
J. Sound Vib.
,
293
(
1
), pp.
462
468
.
23.
Krylov
,
N.
, and
Bogoliubov
,
N.
,
1949
,
Introduction to Non-Linear Mechanics
,
Princeton University Press
,
London
.
24.
Stoer
,
J.
, and
Bulirsch
,
R.
,
2013
,
Introduction to Numerical Analysis
, Vol.
12
,
Springer Science & Business Media
, New York.
You do not currently have access to this content.