Catastrophic chaotic and hyperchaotic dynamical behaviors have been experimentally observed in the so-called “smart valves” network, given certain critical parameters and initial conditions. The centralized network-based control of these coupled systems may effectively mitigate the harmful dynamics of the valve-actuator configuration which can be potentially caused by a remote set and would gradually affect the whole network. In this work, we address the centralized control of two bi-directional solenoid actuated butterfly valves dynamically coupled in series subject to the chaotic and hyperchaotic dynamics. An interconnected adaptive scheme is developed and examined to vanish both the chaotic and hyperchaotic dynamics and return the coupled network to its safe domain of operation.

References

References
1.
Naseradinmousavi
,
P.
,
Segala
,
D. B.
, and
Nataraj
,
C.
,
2016
, “
Chaotic and Hyperchaotic Dynamics of Smart Valves System Subject to a Sudden Contraction
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
5
), p.
051025
.
2.
Naseradinmousavi
,
P.
,
Krstic
,
M.
, and
Nataraj
,
C.
,
2016
, “
Design Optimization of Dynamically Coupled Actuated Butterfly Valves Subject to a Sudden Contraction
,”
ASME J. Mech. Des.
,
138
(
4
), p.
041402
.
3.
Naseradinmousavi
,
P.
,
Machiani
,
S. G.
,
Ayoubi
,
M. A.
, and
Nataraj
,
C.
,
2017
, “
Coupled Operational Optimization of Smart Valve System Subject to Different Approach Angles of a Pipe Contraction
,”
J. Struct. Multidiscip. Optim.
,
55
(
3
), pp.
1001
1015
.
4.
Naseradinmousavi
,
P.
,
2015
, “
A Novel Nonlinear Modeling and Dynamic Analysis of Solenoid Actuated Butterfly Valves Coupled in Series
,”
ASME J. Dyn. Syst. Meas. Control
,
137
(
1
), p.
014505
.
5.
Naseradinmousavi
,
P.
, and
Nataraj
,
C.
,
2013
, “
Optimal Design of Solenoid Actuators Driving Butterfly Valves
,”
ASME J. Mech. Des.
,
135
(
9
), p.
094501
.
6.
Naseradinmousavi
,
P.
, and
Nataraj
,
C.
,
2012
, “
Transient Chaos and Crisis Phenomena in Butterfly Valves Driven by Solenoid Actuators
,”
J. Commun. Nonlinear Sci. Numer. Simul.
,
17
(
11
), pp.
4336
4345
.
7.
Lee
,
D.
,
Naseradinmousavi
,
P.
, and
Nataraj
,
C.
,
2012
, “
Nonlinear Model-Based Adaptive Control of a Solenoid-Valve System
,”
J. Control Sci. Eng.
,
2012
, p.
846458
.
8.
Naseradinmousavi
,
P.
, and
Nataraj
,
C.
,
2011
, “
Nonlinear Mathematical Modeling of Butterfly Valves Driven by Solenoid Actuators
,”
J. Appl. Math. Modell.
,
35
(
5
), pp.
2324
2335
.
9.
Naseradinmousavi
,
P.
,
Krstic
,
M.
,
Bagheri
,
M.
, and
Nataraj
,
C.
,
2016
, “
Coupled Chaotic and Hyperchaotic Dynamics of Actuated Butterfly Valves Operating in Series
,”
ASME
Paper No. DSCC2016-9601.
10.
Naseradinmousavi
,
P.
,
Bagheri
,
M.
, and
Nataraj
,
C.
,
2016
, “
Coupled Operational Optimization of Smart Valve System Subject to Different Approach Angles of a Pipe Contraction
,”
ASME
Paper No. DSCC2016-9627.
11.
Naseradinmousavi
,
P.
, and
Nataraj
,
C.
,
2015
, “
Design Optimization of Solenoid Actuated Butterfly Valves Dynamically Coupled in Series
,”
ASME
Paper No. DSCC2015-9605.
12.
Naseradinmousavi
,
P.
,
2015
, “
Optimal Design of Solenoid Actuated Butterfly Valves Dynamically Coupled in Series
,”
ASME
Paper No. IMECE2015-50094.
13.
Naseradinmousavi
,
P.
, and
Nataraj
,
C.
,
2011
, “
A Chaotic Blue Sky Catastrophe of Butterfly Valves Driven by Solenoid Actuators
,”
ASME
Paper No. IMECE2011-62608.
14.
Chang-Jian
,
C.-W.
,
2014
, “
Gear Dynamics Analysis With Turbulent Journal Bearings Mounted Hybrid Squeeze Film Damper-Chaos and Active Control Analysis
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
1
), p.
011011
.
15.
Morel
,
C.
,
Vlad
,
R.
, and
Morel
,
J.-Y.
,
2008
, “
Anticontrol of Chaos Reduces Spectral Emissions
,”
ASME J. Comput. Nonlinear Dyn.
,
3
(
4
), p.
041009
.
16.
Chen
,
D.
, and
Liu
,
W.
,
2016
, “
Chaotic Behavior and Its Control in a Fractional-Order Energy Demand-Supply System
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
6
), p.
061010
.
17.
Wang
,
B.
,
Shi
,
K.
,
Zhang
,
C.
, and
Zhu
,
D.
,
2015
, “
Fuzzy Generalized Predictive Control for Nonlinear Brushless Direct Current Motor
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
4
), p.
041004
.
18.
Luo
,
R.
, and
Zeng
,
Y.
,
2015
, “
The Control and Synchronization of a Class of Chaotic Systems With Output Variable and External Disturbance
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
5
), p.
051011
.
19.
Reddy
,
B. S.
, and
Ghosal
,
A.
,
2015
, “
Asymptotic Stability and Chaotic Motions in Trajectory Following Feedback Controlled Robots
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
5
), p.
051012
.
20.
Khamsuwan
,
P.
, and
Kuntanapreeda
,
S.
,
2016
, “
A Linear Matrix Inequality Approach to Output Feedback Control of Fractional-Order Unified Chaotic Systems With One Control Input
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
5
), p.
051021
.
21.
Merat
,
K.
,
Chekan
,
J. A.
,
Salarieh
,
H.
, and
Alasty
,
A.
,
2014
, “
Control of Discrete Time Chaotic Systems Via Combination of Linear and Nonlinear Dynamic Programming
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
1
), p.
011008
.
22.
Tian
,
X.
, and
Fei
,
S.
,
2015
, “
Adaptive Control for Fractional-Order Micro-Electro-Mechanical Resonator With Nonsymmetric Dead-Zone Input
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
6
), p.
061022
.
23.
Aghababa
,
M. P.
, and
Hashtarkhani
,
B.
,
2015
, “
Synchronization of Unknown Uncertain Chaotic Systems Via Adaptive Control Method
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
5
), p.
051004
.
24.
Li
,
C.
,
Su
,
K.
, and
Wu
,
L.
,
2012
, “
Adaptive Sliding Mode Control for Synchronization of a Fractional-Order Chaotic System
,”
ASME J. Comput. Nonlinear Dyn.
,
8
(
3
), p.
031005
.
25.
Arefi
,
M. M.
,
2016
, “
Adaptive Robust Stabilization of Rossler System With Time-Varying Mismatched Parameters Via Scalar Input
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
4
), p.
041024
.
26.
Templeton
,
B. A.
,
Cox
,
D. E.
,
Kenny
,
S. P.
,
Ahmadian
,
M.
, and
Southward
,
S. C.
,
2010
, “
On Controlling an Uncertain System With Polynomial Chaos and H2 Control Design
,”
ASME J. Dyn. Syst. Meas. Control
,
132
(
6
), p.
061304
.
27.
Alasty
,
A.
, and
Salarieh
,
H.
,
2007
, “
Identification and Control of Chaos Using Fuzzy Clustering and Sliding Mode Control in Unmodeled Affine Dynamical Systems
,”
ASME J. Dyn. Syst. Meas. Control
,
130
(
1
), p.
011004
.
28.
Treesatayapun
,
C.
, and
Uatrongjit
,
S.
,
2005
, “
Controlling Chaos by Hybrid System Based on FREN and Sliding Mode Control
,”
ASME J. Dyn. Syst. Meas. Control
,
128
(
2
), pp.
352
358
.
29.
Naseradinmousavi
,
P.
,
2012
, “
Nonlinear Modeling, Dynamic Analysis, and Optimal Design and Operation of Electromechanical Valve Systems
,”
Ph.D. thesis
, Villanova University, Villanova, PA.
30.
Bennett
,
C. O.
, and
Myers
,
J. E.
,
1962
,
Momentum, Heat, and Mass Transfer
,
McGraw-Hill
, New York.
31.
Massey
,
B. S.
, and
Ward-Smith
,
J.
,
1998
,
Mechanics of Fluids
,
7th ed.
,
CRC Press
,
Boca Raton, FL
.
32.
Nayfeh
,
A. H.
, and
Balachandran
,
B.
,
1995
,
Applied Nonlinear Dynamics: Analytical, Computational, and Experimental Methods
,
Wiley
,
Hoboken, NJ
.
33.
Krstić
,
M.
,
Kanellakopoulos
,
I.
, and
Kokotović
,
P.
,
1995
,
Nonlinear and Adaptive Control Design
,
Wiley-Interscience
,
New York
.
34.
Krstic
,
M.
, and
Kokotovic
,
P. V.
,
1995
, “
Control Lyapunov Functions for Adaptive Nonlinear Stabilization
,”
Syst. Control Lett.
,
26
(
1
), pp.
17
23
.
35.
Slotine
,
J. J. E.
, and
Li
,
W.
,
1991
,
Applied Nonlinear Control
,
Prentice Hall
,
Upper Saddle River, NJ
.
You do not currently have access to this content.