In this paper, from the local theory of flow at the corner in discontinuous dynamical systems, obtained are analytical conditions for switching impact-alike chatter at corners. The objective of this investigation is to find the dynamics mechanism of border-collision bifurcations in discontinuous dynamical systems. Multivalued linear vector fields are employed, and generic mappings are defined among boundaries and corners. From mapping structures, periodic motions switching at the boundaries and corners are determined, and the corresponding stability and bifurcations of periodic motions are investigated by eigenvalue analysis. However, the grazing and sliding bifurcations are determined by the local singularity theory of discontinuous dynamical systems. From such analytical conditions, the corresponding parameter map is developed for periodic motions in such a multivalued dynamical system in the single domain with corners. Numerical simulations of periodic motions are presented for illustrations of motions complexity and catastrophe in such a discontinuous dynamical system.

References

References
1.
Den Hartog
,
J. P.
,
1931
, “
Forced Vibrations With Coulomb and Viscous Damping
,”
Trans. Am. Soc. Mech. Eng.
,
53
, pp.
107
115
.
2.
Levinson
,
N
.,
1949
, “
A Second Order Differential Equation With Singular Solutions
,”
Ann. Math.
,
50
(
1
), pp.
127
153
.
3.
Levitan
,
E. S.
,
1960
, “
Forced Oscillation of a Spring-Mass System Having Combined Coulomb and Viscous Damping
,”
J. Acoust. Soc. Am.
,
32
(
10
), pp.
1265
1269
.
4.
Filippov
,
A. F.
,
1964
,
Differential Equations With Discontinuous Right Hand Side
(American Mathematical Society Translations, Series 2, Vol.
42
), Springer, Dordrecht, The Netherlands, pp.
199
231
.
5.
Filippov
,
A. F.
,
1988
,
Differential Equations With Discontinuous Righthand Sides
,
Kluwer Academic Publishers
,
Dordrecht, The Netherlands
.
6.
Aizerman
,
M. A.
, and
Pyatnitskii
,
E. S.
,
1974
, “
Foundation of a Theory of Discontinuous Systems—1
,”
Autom. Remote Control
,
35
, pp.
1066
1079
.
7.
Aizerman
,
M. A.
, and
Pyatnitskii
,
E. S.
,
1974
, “
Foundation of a Theory of Discontinuous Systems—2
,”
Autom. Remote Control
,
35
, pp.
1241
1262
.
8.
Utkin
,
V. I.
,
1976
, “
Variable Structure Systems With Sliding Modes
,”
IEEE Trans. Autom. Control
,
22
(2), pp.
212
222
.
9.
Utkin
,
V. I.
,
1978
,
Sliding Modes and Their Application in Variable Structure Systems
,
MIR Publishers
,
Moscow, Russia
.
10.
Utkin
,
V. I.
,
1981
,
Sliding Regimes in Optimization and Control Problem
,
Nauka
,
Moscow, Russia
.
11.
DeCarlo
,
R. A.
,
Zak
,
S. H.
, and
Matthews
,
G. P.
,
1988
, “
Variable Structure Control of Nonlinear Multivariable Systems: A Tutorial
,”
Proc. IEEE
,
76
(
3
), pp.
212
232
.
12.
Leine
,
R. I.
,
van Campen
,
D. H.
, and
van de Vrande
,
B. L.
,
2000
, “
Bifurcations in Nonlinear Discontinuous Systems
,”
Nonlinear Dyn.
,
23
(
2
), pp.
105
164
.
13.
Zhusubaliyev
,
Z.
, and
Mosekilde
,
E.
,
2003
,
Bifurcations and Chaos in Piecewise-Smooth Dynamical Systems
,
World Scientific
,
Singapore
.
14.
Luo
,
A. C. J.
,
2005
, “
A Theory for Non-Smooth Dynamical Systems on Connectable Domains
,”
Commun. Nonlinear Sci. Numer. Simul.
,
10
(
1
), pp.
1
55
.
15.
Luo
,
A. C. J.
,
2005
, “
Imaginary, Sink and Source Flows in the Vicinity of the Separatrix of Non-Smooth Dynamic System
,”
J. Sound Vib.
,
285
(1–2), pp.
443
456
.
16.
Luo
,
A. C. J.
,
2006
,
Singularity and Dynamics on Discontinuous Vector Fields
,
Elsevier
,
Amsterdam, The Netherlands
.
17.
Luo
,
A. C. J.
,
2008
, “
A Theory for Flow Switchability in Discontinuous Dynamical Systems
,”
Nonlinear Anal. Hybrid Syst.
,
2
(
4
), pp.
1030
1061
.
18.
Luo
,
A. C. J.
,
2009
,
Discontinuous Dynamical Systems on Time-Varying Domains
,
HEP-Springer
,
Berlin
.
19.
Luo
,
A. C. J.
, and
Huang
,
J. Z.
,
2012
, “
Discontinuous Dynamics of a Non-Linear, Self-Excited, Friction-Induced, Periodically Forced Oscillator
,”
Nonlinear Anal. Real World Appl.
,
13
(
1
), pp.
241
257
.
20.
Feigin
,
M. I.
,
1970
, “
Doubling of the Oscillation Period With C-Bifurcation in Piecewise-Continuous Systems
,”
PMM
,
34
(5), pp.
861
869
.
21.
Feigin
,
M. I.
,
1995
, “
The Increasingly Complex Structure of the Bifurcation Tree of a Piecewise-Smooth System
,”
J. Appl. Math. Mech.
,
59
(
6
), pp.
853
863
.
22.
Nordmark
,
A. B.
,
1991
, “
Non-Periodic Motion Caused by Grazing Incidence in an Impact Oscillator
,”
J. Sound Vib.
,
145
(
2
), pp.
279
297
.
23.
Nusse
,
H. E.
, and
Yorke
,
J. A.
,
1992
, “
Border-Collision Bifurcations Including ‘Period Two to Period Three’ for Piecewise Smooth Systems
,”
Physica D
,
57
(1–2), pp.
39
57
.
24.
Luo
,
A. C. J.
,
2012
,
Discontinuous Dynamical Systems
,
HEP-Springer
,
Berlin
.
25.
Luo
,
A. C. J.
,
2012
,
Continuous Dynamical Systems
,
HEP-L&H Scientific
,
Glen Carbon, IL
.
You do not currently have access to this content.