This paper proposes a method for process parameter optimization of a mobile robotic percussive riveting system with flexible joints to guarantee the rivet gun alignment during the operation. This development is motivated by the increasing interest in using industrial robots to replace human operators for percussive impact riveting in aerospace assembly. In percussive riveting, the rivet gun generates repetitive impacts acting on the rivet. These impacts not only deform the rivet but also induce forced vibration to the robot, and thus the robot must hold the gun firmly during riveting. The process parameters for the mobile robotic riveting system include those related to the impact force generation for planning the rivet gun input and those related to the robot pose with respect to the joined panels for planning the mobile platform motion. These parameters are incorporated into a structural dynamic model of the robot under a periodic impact force. Then an approximate analytical solution is formulated to calculate the displacement of the rivet gun mounted on the end effector for its misalignment evaluation. It is found that both the force frequency and the mobile platform position have strong influence on the robotic riveting performance in terms of alignment during operation. Global optimization of these process parameters is carried out to demonstrate the practical application of the proposed method for the planning of the robotic percussive riveting system.

References

References
1.
Nof
,
S. Y.
,
1999
,
Handbook of Industrial Robotics
,
2nd ed.
,
Wiley
,
New York
.http://onlinelibrary.wiley.com/book/10.1002/9780470172506
2.
Commercial Feature Stories,
2014
, “
Boeing: A Futuristic View of the 777 Fuselage Build
,” The Boeing Company, Chicago, IL, accessed Sept. 1, 2016, http://www.boeing.com/features/2014/07/bca-777-fuselage-07-14-14.page
3.
Campbell
,
F. C.
,
2006
,
Manufacturing Technology for Aerospace Structural Materials
,
Elsevier
,
New York
, pp.
495
537
.
4.
Cherng
,
J. G.
,
Eksioglu
,
M.
, and
Kizilaslan
,
K.
,
2009
, “
Vibration Reduction of Pneumatic Percussive Rivet Tools: Mechanical and Ergonomic Re-Design Approaches
,”
Appl. Ergon.
,
40
(
2
), pp.
256
266
.
5.
Peng
,
S.-L.
,
1994
, “
Characterization and Ergonomic Design Modifications for Pneumatic Percussive Rivet Tools
,”
Int. J. Ind. Ergon.
,
13
(
3
), pp.
171
187
.
6.
Zieve
,
P. B.
,
2013
, “
Frame-Clip Riveting End Effector
,”
SAE
Paper No. 2013-01-2079.
7.
Xi
,
F.
,
Lin
,
Y.
, and
Tu
,
X.
,
2013
, “
Framework on Robotic Percussive Riveting for Aircraft Assembly Automation
,”
Adv. Manuf.
,
1
(
2
), pp.
112
122
.
8.
Jayaweera
,
N.
, and
Webb
,
P.
,
2007
, “
Adaptive Robotic Assembly of Compliant Aero-Structure Components
,”
Rob. Comput. Integr. Manuf.
,
23
(
2
), pp.
180
194
.
9.
Webb
,
P.
,
Eastwood
,
S.
,
Jayaweera
,
N.
, and
Chen
,
Y.
,
2005
, “
Automated Aero-Structure Assembly
,”
Ind. Rob.
,
32
(
5
), pp.
383
387
.
10.
Blazejczyk-Okolewska
,
B.
, and
Czolczynski
,
K.
,
1998
, “
Some Aspects of the Dynamical Behaviour of the Impact Force Generator
,”
Chaos Solitons Fractals
,
9
(
8
), pp.
1307
1320
.
11.
Czolczynski
,
K.
,
Blazejczyk-Okolewska
,
B.
, and
Okolewski
,
A.
,
2016
, “
Analytical and Numerical Investigations of Stable Periodic Solutions of the Impacting Oscillator With a Moving Base
,”
Int. J. Mech. Sci.
,
115–116
, pp.
325
338
.
12.
Kadam
,
R. S.
,
2006
, “
Vibration Characterization and Numerical Modeling of a Pneumatic Impact Hammer
,”
M.S. thesis
, Virginia Polytechnic Institute and State University, Blacksburg, VA.https://vtechworks.lib.vt.edu/handle/10919/34359
13.
Bloxsom
,
W. A.
,
2003
, “
Modeling of the Reciprocating, Pneumatic Impact Hammer
,” Ph.D. thesis, University of Nevada, Reno, NV.
14.
Johnson
,
T. J.
,
Manning
,
R.
,
Adams
,
D. E.
,
Sterkenburg
,
R.
, and
Jata
,
K.
,
2006
, “
Diagnostics of Tool-Part Interactions During Riveting on an Aluminum Aircraft Fuselage
,”
J. Aircr.
,
43
(
3
), pp.
779
786
.
15.
Li
,
Y.
,
Xi
,
F.
, and
Behdinan
,
K.
,
2010
, “
Dynamic Modeling and Simulation of Percussive Impact Riveting for Robotic Automation
,”
ASME J. Comput. Nonlinear Dyn.
,
5
(
2
), p.
021011
.
16.
Li
,
Y.
,
Xi
,
F.
,
Mohamed
,
R. P.
, and
Behdinan
,
K.
,
2011
, “
Dynamic Analysis for Robotic Integration of Tooling Systems
,”
ASME J. Dyn. Syst. Meas. Control
,
133
(
4
), p.
041001
.
17.
Nie
,
S.
,
Li
,
Y.
,
Guo
,
S.
,
Song
,
T.
, and
Xi
,
F.
,
2016
, “
Modeling and Simulation for Fatigue Life Analysis of Robots With Flexible Joints Under Percussive Impact Forces
,”
Rob. Comput. Integr. Manuf.
,
37
(
1
), pp.
292
301
.
18.
Dwivedy
,
S. K.
, and
Eberhard
,
P.
,
2006
, “
Dynamic Analysis of Flexible Manipulators: A Literature Review
,”
Mech. Mach. Theory
,
41
(
7
), pp.
749
777
.
19.
Benosman
,
M.
, and
Le Vey
,
G.
,
2004
, “
Control of Flexible Manipulators: A Survey
,”
Robotica
,
22
(
5
), pp.
533
545
.
20.
Rahimi
,
H. N.
, and
Nazemizadeh
,
M.
,
2014
, “
Dynamic Analysis and Intelligent Control Techniques for Flexible Manipulators: A Review
,”
Adv. Rob.
,
28
(
2
), pp.
63
76
.
21.
Siciliano
,
B.
, and
Khatib
,
O.
,
2008
,
Springer Handbook of Robotics
,
Springer-Verlag
,
Berlin
, pp.
229
244
, 963–986.
22.
Behi
,
F.
, and
Tesar
,
D.
,
1991
, “
Parametric Identification for Industrial Manipulators Using Experimental Modal Analysis
,”
IEEE Trans. Rob. Autom.
,
7
(
5
), pp.
642
652
.
You do not currently have access to this content.