In this article, a recursive approach is used to dynamically model a tree-type robotic system with floating base. Two solution procedures are developed to obtain the time responses of the mentioned system. A set of highly nonlinear differential equations is employed to obtain the dynamic behavior of the system when it has no contact with the ground or any object in its environment (flying phase); and a set of algebraic equations is exploited when this tree-type robotic system collides with the ground (impact phase). The Gibbs–Appell (G–A) formulation in recursive form and the Newton’s impact law are applied to derive the governing equations of the aforementioned robotic system for the flying and impact phases, respectively. The main goal of this article is a systematic algorithm that is used to divide any tree-type robotic system into a specific number of open kinematic chains and derive the forward dynamic equations of each chain, including its inertia matrix and right-hand side vector. Then, the inertia matrices and the right-hand side vectors of all these chains are automatically integrated to construct the global inertia matrix and the global right-hand side vector of the whole system. In fact, this work is an extension of Shafei and Shafei (2016, “A Systematic Method for the Hybrid Dynamic Modeling of Open Kinematic Chains Confined in a Closed Environment,” Multibody Syst. Dyn., 38(1), pp. 21–42.), which was restricted to a single open kinematic chain. So, to show the effectiveness of the suggested algorithm in deriving the motion equations of multichain robotic systems, a ten-link tree-type robotic system with floating base is simulated.

References

References
1.
Muybridge
,
E.
,
1957
,
Animals in Motion
,
Dover Publications
,
New York
.
2.
Schiehlen
,
W.
,
2006
, “
Computational Dynamics: Theory and Applications of Multibody Systems
,”
Eur. J. Mech., A: Solids
,
25
(
4
), pp.
566
594
.
3.
Saha
,
S. K.
,
1997
, “
A Decomposition of the Manipulator Inertia Matrix
,”
IEEE Trans. Rob. Autom.
,
13
(
2
), pp.
301
304
.
4.
Shah
,
S. V.
,
Saha
,
S. K.
, and
Dutt
,
J. K.
,
2012
, “
Modular Framework for Dynamic Modeling and Analyses of Legged Robots
,”
Mech. Mach. Theory
,
49
, pp.
234
255
.
5.
McMillan
,
S.
, and
Orin
,
D. E.
,
1998
, “
Forward Dynamics of Multilegged Vehicles Using the Composite Rigid Body Method
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Leuven, Belgium, May 16–20, Vol. 4, pp.
464
470
.
6.
Featherstone
,
R.
,
2008
,
Rigid Body Dynamics Algorithms
,
Springer
,
New York
.
7.
Vukobratovic
,
M.
,
Potkonjak
,
V.
,
Babkovic
,
K.
, and
Borovac
,
B.
,
2007
, “
Simulation Model of General Human and Humanoid Motion
,”
Multibody Syst. Dyn.
,
17
(
1
), pp.
71
96
.
8.
Bhalerao
,
K. D.
,
Critchley
,
J.
, and
Anderson
,
K.
,
2012
, “
An Efficient Parallel Dynamics Algorithm for Simulation of Large Articulated Robotic Systems
,”
Mech. Mach. Theory
,
53
, pp.
86
98
.
9.
Shah
,
S. V.
,
Saha
,
S. K.
, and
Dutt
,
J. K.
,
2013
,
Dynamics of Tree-Type Robotic Systems
,
Springer
, Dordrecht, The Netherlands.
10.
Vukobratovic
,
M.
, and
Potkonjak
,
V.
,
1999
, “
Dynamic of Contact Tasks in Robotics—Part I: General Model of Robot Interacting With Environment
,”
Mech. Mach. Theory
,
34
(
6
), pp.
923
942
.
11.
Gilardi
,
G.
, and
Sharf
,
I.
,
2002
, “
Literature Survey of Contact Dynamics Modelling
,”
Mech. Mach. Theory
,
37
(
10
), pp.
1213
1239
.
12.
Kövecses
,
J.
, and
Cleghorn
,
W.
,
2003
, “
Finite and Impulsive Motion of Constrained Mechanical Systems Via Jourdain’s Principle: Discrete and Hybrid Parameter Models
,”
Int. J. Non-Linear Mech.
,
38
(
6
), pp.
935
956
.
13.
Najafabadi
,
S. A. M.
,
Kövecses
,
J.
, and
Angeles
,
J.
,
2008
, “
Impacts in Multibody Systems: Modeling and Experiments
,”
Multibody Syst. Dyn.
,
20
(
2
), pp.
163
176
.
14.
Font-Llagunes
,
J. M.
, and
Kövecses
,
J.
,
2009
, “
Dynamics and Energetics of a Class of Bipedal Walking Systems
,”
Mech. Mach. Theory
,
44
(
11
), pp.
1999
2019
.
15.
Flickinger
,
D. M.
, and
Bowling
,
A.
,
2010
, “
Simultaneous Oblique Impacts and Contacts in Multibody Systems With Friction
,”
Multibody Syst. Dyn.
,
23
(
3
), pp.
249
261
.
16.
Flores
,
P.
, and
Ambrósio
,
J.
,
2010
, “
On the Contact Detection for Contact-Impact Analysis in Multibody Systems
,”
Multibody Syst. Dyn.
,
24
(
1
), pp.
103
122
.
17.
Machado
,
M.
,
Moreira
,
P.
,
Flores
,
P.
, and
Lankarani
,
H. M.
,
2012
, “
Compliant Contact Force Models in Multibody Dynamics: Evolution of the Hertz Contact Theory
,”
Mech. Mach. Theory
,
53
, pp.
99
121
.
18.
Khulief
,
Y. A.
,
2012
, “
Modeling of Impact in Multibody Systems: An Overview
,”
ASME J. Comput. Nonlinear Dyn.
,
8
(2), p. 021012.
19.
Glocker
,
C.
,
2013
, “
Energetic Consistency Conditions for Standard Impacts Part I: Newton-Type Inequality Impact Laws and Kane’s Example
,”
Multibody Syst. Dyn.
,
29
(
1
), pp.
77
117
.
20.
Brogliato
,
B.
,
2014
, “
Kinetic Quasi-Velocities in Unilaterally Constrained Lagrangian Mechanics With Impacts and Friction
,”
Multibody Syst. Dyn.
,
32
(
2
), pp.
175
216
.
21.
Chang
,
C. C.
, and
Peng
,
S. T.
,
2007
, “
Impulsive Motion of Multibody Systems
,”
Multibody Syst. Dyn.
,
17
(
1
), pp.
47
70
.
22.
Tlalolini
,
D.
,
Aoustin
,
Y.
, and
Chevallereau
,
C.
,
2010
, “
Design of a Walking Cyclic Gait With Single Support Phases and Impacts for the Locomotor System of a Thirteen-Link 3D Biped Using the Parametric Optimization
,”
Multibody Syst. Dyn.
,
23
(
1
), pp.
33
56
.
23.
Hurmuzlu
,
Y.
, and
Marghitu
,
D. B.
,
1994
, “
Rigid Body Collision of Planar Kinematic Chains With Multiple Contact Points
,”
Int. J. Rob. Res.
,
13
(
1
), pp.
82
92
.
24.
Shafei
,
A. M.
, and
Shafei
,
H. R.
,
2016
, “
A Systematic Method for the Hybrid Dynamic Modeling of Open Kinematic Chains Confined in a Closed Environment
,”
Multibody Syst. Dyn.
,
38
(
1
), pp.
21
42
.
25.
Shafei
,
A. M.
, and
Shafei
,
H. R.
,
2016
, “
Dynamic Behavior of Flexible Multiple Links Captured Inside a Closed Space
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
5
), p.
051016
.
26.
Shafei
,
A. M.
, and
Shafei
,
H. R.
,
2016
, “
Oblique Impact of Multi-Flexible-Link Systems
,”
J. Vib. Control
, (epub).
27.
Bae
,
D. S.
, and
Haug
,
E. J.
,
1987
, “
A Recursive Formulation for Constrained Mechanical System Dynamics: Part I. Open Loop System
,”
Mech. Struct. Mach.
,
15
(
3
), pp.
359
382
.
28.
Park
,
F. C.
,
Choi
,
J.
, and
Ploen
,
S. R.
,
1999
, “
Symbolic Formulation of Closed Chain Dynamics in Independent Coordinates
,”
Mech. Mach. Theory
,
34
(
5
), pp.
731
751
.
29.
Sohl
,
G. A.
, and
Bobrow
,
J. E.
,
2001
, “
A Recursive Multibody Dynamics and Sensitivity Algorithm for Branched Kinematic Chains
,”
ASME J. Dyn. Syst., Meas., Control
,
123
(
3
), pp.
391
399
.
30.
Mata
,
V.
,
Provenzano
,
S.
,
Valero
,
F.
, and
Cuadrado
,
J. I.
,
2002
, “
Serial-Robot Dynamics Algorithms for Moderately Large Numbers of Joints
,”
Mech. Mach. Theory
,
37
(
8
), pp.
739
755
.
31.
Chenut
,
X.
,
Fisette
,
P.
, and
Samin
,
J. C.
,
2002
, “
Recursive Formalism With a Minimal Dynamic Parameterization for the Identification and Simulation of Multibody Systems. Application to the Human Body
,”
Multibody Syst. Dyn.
,
8
(
2
), pp.
117
140
.
32.
Naudet
,
J.
,
Lefeber
,
D.
,
Daerden
,
F.
, and
Terze
,
Z.
,
2003
, “
Forward Dynamics of Open-Loop Multibody Mechanisms Using an Efficient Recursive Algorithm Based on Canonical Momenta
,”
Multibody Syst. Dyn.
,
10
(
1
), pp.
45
59
.
33.
Lot
,
R.
, and
Dalio
,
M.
,
2004
, “
A Symbolic Approach for Automatic Generation of the Equations of Motion of Multibody Systems
,”
Multibody Syst. Dyn.
,
12
(
2
), pp.
147
172
.
34.
Lugris
,
U.
,
Naya
,
M. A.
,
Gonzalez
,
F.
, and
Cuadrado
,
J.
,
2007
, “
Performance and Application Criteria of Two Fast Formulations for Flexible Multibody Dynamics
,”
Mech. Based Des. Struct. Mach.
,
35
(
4
), pp.
381
404
.
35.
Mohan
,
A.
, and
Saha
,
S. K.
,
2007
, “
A Recursive, Numerically Stable, and Efficient Simulation Algorithm for Serial Robots
,”
Multibody Syst. Dyn.
,
17
(
4
), pp.
291
319
.
36.
Gattringer
,
H.
,
Bremer
,
H.
, and
Kastner
,
M.
,
2011
, “
Efficient Dynamic Modeling for Rigid Multi-Body Systems With Contact and Impact: An O(n) Formulation
,”
Acta Mech.
,
219
(1), pp.
111
128
.
37.
Müller
,
A.
,
2016
, “
Recursive Higher-Order Constraints for Linkages With Lower Kinematic Pairs
,”
Mech. Mach. Theory
,
100
, pp.
33
43
.
38.
Wittenburg
,
J.
,
2008
,
Dynamics of Multibody Systems
,
Springer
,
Berlin
.
39.
Featherstone
,
R.
, and
Orin
,
D.
,
2000
, “
Robot Dynamics: Equations and Algorithms
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), San Francisco, CA, Apr. 24–28, Vol.
4
, pp.
826
834
.
40.
Eberhard
,
P.
, and
Schiehlen
,
W.
,
2006
, “
Computational Dynamics of Multibody Systems: History, Formalisms, and Applications
,”
ASME J. Comput. Nonlinear Dyn.
,
1
(
1
), pp.
3
12
.
41.
Korayem
,
M. H.
, and
Shafei
,
A. M.
,
2013
, “
Application of Recursive Gibbs–Appell Formulation in Deriving the Equations of Motion of N-Viscoelastic Robotic Manipulators in 3D Space Using Timoshenko Beam Theory
,”
Acta Astronaut.
,
83
, pp.
273
294
.
42.
Korayem
,
M. H.
,
Shafei
,
A. M.
, and
Shafei
,
H. R.
,
2012
, “
Dynamic Modeling of Nonholonomic Wheeled Mobile Manipulators With Elastic Joints Using Recursive Gibbs–Appell Formulation
,”
Sci. Iran., Trans. B
,
19
(
4
), pp.
1092
1104
.
43.
Korayem
,
M. H.
, and
Shafei
,
A. M.
,
2015
, “
A New Approach for Dynamic Modeling of n-Viscoelastic-Link Robotic Manipulators Mounted on a Mobile Base
,”
Nonlinear Dyn.
,
79
(
4
), pp.
2767
2786
.
44.
Hollerbach
,
J. M.
,
1980
, “
A Recursive Lagrangian Formulation of Manipulator Dynamics and a Comparative Study of Dynamics Formulation Complexity
,”
IEEE Trans. Syst., Man, Cybern.
,
10
(11), pp.
730
736
.
You do not currently have access to this content.