This paper presents a development in design, mathematical modeling, and experimental study of a vibro-impact moling device, which was invented by the author before. A vibratory unit deploying electromechanical interactions of a conductor with oscillating magnetic field has been realized and developed. The combination of resonance in an RLC circuit including a solenoid is found to create a relative oscillatory motion between the metal bar and the solenoid. This results in impacts of the solenoid on an obstacle block, which causes the forward motion of the system. Compared to the former model which employs impact from the metal bar, the improved rig can offer a higher progression rate of six times when using the same power supply. The novel geometrical arrangement allows for future optimization in terms of system parametric selection and adaptive control. This implies a very promising deployment of the mechanism in ground moling machines as well as other self-propelled mobile systems. In this paper, insight to the design development based on physical and mathematical models of the rig is presented. The coupled electromechanical equations of motion then are solved numerically, and a comparison between experimental results and numerical predictions is presented.

References

References
1.
Tsaplin
,
S. A.
,
1953
, “
Vibroudarnye Mehanizm Dlya Dorozhno-Mostovoy Stroitelstvo
,” (Impact-Vibration mechanisms for Road Bridge Construction). Avtotransizdat, Moscow.
2.
Barkan
,
D. D.
,
1962
,
Dynamics of Bases and Foundations
,
McGraw-Hill
,
New York
.
3.
Rodger
,
A. A.
, and
Littlejohn
,
G. S.
,
1980
, “
A Study of Vibratory Driving in Granular Soils
,”
Geotechnique
,
30
(
3
), pp.
269
293
.
4.
Pavlovskaia
,
E.
,
Wiercigroch
,
M.
, and
Grebogi
,
C.
,
2001
, “
Modelling of an Impact System With a Drift
,”
Phys. Rev. E
,
64
(
5
), p.
056224
.
5.
Pavlovskaia
,
E.
,
Wiercigroch
,
M.
,
Woo
,
K.-C.
, and
Rodger
,
A. A.
,
2003
, “
Modelling of Ground Moling Dynamics by an Impact Oscillator With a Frictional Slider
,”
Meccanica
,
38
(
1
), pp.
85
97
.
6.
Wiercigroch
,
M.
,
Krivtsov
,
A.
, and
Wojewoda
,
J.
,
2000
, “
Dynamics of High Frequency Percussive Drilling of Hard Materials
,”
Nonlinear Dynamics and Chaos of Mechanical Systems With Discontinuities
,
M.
Wiercigroch
and
B.
de Kraker
, eds.,
World Scientific
,
Singapore
, pp.
403
444
.
7.
Wiercigroch
,
M.
,
Wojewoda
,
J.
, and
Krivtsov
,
A. M.
,
2005
, “
Dynamics of Ultrasonic Percussive Drilling of Hard Rocks
,”
J. Sound Vib.
,
280
(
3–5
), pp.
739
757
.
8.
Woo
,
K.-C.
,
Rodger
,
A. A.
,
Neilson
,
R. D.
, and
Wiercigroch
,
M.
,
2000
, “
Application of the Harmonic Balance Method to Ground Moling Machines Operating in Periodic Regimes
,”
Chaos, Solitons Fractals
,
11
(
15
), pp.
2515
2525
.
9.
Liu
,
Y.
,
Wiercigroch
,
M.
,
Pavlovskaia
,
E.
, and
Yu
,
H.
,
2013
, “
Modelling of a Vibro-Impact Capsule System
,”
Int. J. Mech. Sci.
,
66
, pp.
2
11
.
10.
Liu
,
Y.
,
Pavlovskaia
,
E.
,
Wiercigroch
,
M.
, and
Peng
,
Z.
,
2015
, “
Forward and Backward Motion Control of a Vibro-Impact Capsule System
,”
Int. J. Non-Linear Mech.
,
70
, pp.
30
46
.
11.
Liu
,
Y.
,
Pavlovskaia
,
E.
, and
Wiercigroch
,
M.
,
2016
, “
Experimental Verification of the Vibro-Impact Capsule Model
,”
Nonlinear Dyn.
,
83
(
1
), pp.
1029
1041
.
12.
Nguyen
, V
. D.
,
Woo
,
K. C.
, and
Pavlovskaia
,
E.
,
2008
, “
Experimental Study and Mathematical Modelling of a New of Vibro-Impact Moling Device
,”
Int. J. Non-Linear Mech.
,
43
(
6
), pp.
542
550
.
13.
Mendrela
,
E. A.
, and
Pudlowski
,
Z. J.
,
1992
, “
Transients and Dynamics in a Linear Reluctance Self-Oscillating Motor
,”
IEEE Trans. Energy Convers.
,
7
(
1
), pp.
183
191
.
14.
Nguyen
, V
. D.
, and
Woo
,
K. C.
,
2008
, “
New Electro-Vibroimpact System
,”
Proc. Inst. Mech. Eng., Part C
,
222
(
4
), pp.
629
642
.
15.
Nguyen
, V
. D.
, and
Woo
,
K. C.
,
2008
, “
Nonlinear Dynamic Responses of New Electro-Vibro-Impact System
,”
J. Sound Vib.
,
310
(
4–5
), pp.
769
775
.
16.
Ho
,
J. H.
,
Nguyen
, V
. D.
, and
Woo
,
K. C.
,
2011
, “
Nonlinear Dynamics of a New Electro-Vibroimpact System
,”
Nonlinear Dyn.
,
63
(
1–2
), pp.
35
49
.
17.
Jong
,
S. C.
,
2015
, “
Nonlinear Dynamics of a Vibro-Impact System Subjected to Electromagnetic Interactions
,” Ph.D. thesis, The University of Nottingham Malaysia Campus, Selangor, Malaysia.
18.
De Souza
,
S. L. T.
,
Caldas
, I
. L.
,
Viana
,
R. L.
,
Balthazar
,
J. M.
, and
Brasil
,
R. M. L. R. F.
,
2007
, “
A Simple Feedback Control for a Chaotic Oscillator With Limited Power Supply
,”
J. Sound Vib.
,
299
(
3
), pp.
664
671
.
You do not currently have access to this content.