A complementary metal oxide semiconductor-operational transconductance amplifier (CMOS-OTA)-based implementation of fractional-order Newton–Leipnik chaotic system is introduced in this paper. The proposed circuit offers the advantages of electronic tunability of system order and on-chip integration due to MOS only design. The double strange attractor chaotic behavior of the system in consideration for an order of 2.9 has been demonstrated, and effectiveness of this chaotic system in preliminary secure message communication has also been presented. The theoretical predictions of the proposed implementation have been verified by hspice simulator using Austrian Microsystem (AMS) 0.35 μm CMOS process and subsequently compared with matlab simulink results. The power consumption of the system was 103.6 μW for standalone Newton–Leipnik chaotic generator.

References

References
1.
Lu
,
J. G.
,
2006
, “
Chaotic Dynamics of the Fractional-Order Lü System and Its Synchronization
,”
Phys. Lett. A
,
354
(
4
), pp.
305
311
.
2.
Sheu
,
L. J.
,
Chen
,
H. K.
,
Chen
,
J. H.
,
Tam
,
L. M.
,
Chen
,
W. C.
,
Lin
,
K. T.
, and
Kang
,
Y.
,
2008
, “
Chaos in Newton–Leipnik System With Fractional Order
,”
Chaos, Solitons Fractals
,
36
(
1
), pp.
98
103
.
3.
Radwan
,
A. G.
,
Soliman
,
A. M.
, and
Sedeek
,
A. L.
,
2004
, “
MOS Realization of the Modified Lorenz Chaotic System
,”
Chaos, Solitons Fractals
,
21
(
3
), pp.
553
561
.
4.
Lu
,
J.
,
Chen
,
G.
,
Yu
,
X.
, and
Leung
,
H.
,
2004
, “
Design and Analysis of Multiscroll Chaotic Attractors From Saturated Function Series
,”
IEEE Trans. Circuits Syst.-I
,
51
(
12
), pp.
2476
2490
.
5.
Cafagna
,
D.
, and
Grassi
,
G.
,
2003
, “
New 3D-Scroll Attractors in Hyperchaotic Chua's Circuit Forming a Ring
,”
Int. J. Bifurcation Chaos
,
13
(
10
), pp.
2889
2903
.
6.
Xiong, L., Lu, Y.-J., Zhang, Y. F., Zhang, X. G., and Gupta, P., 2016, “
Design and Hardware Implementation of a New Chaotic Secure Communication Technique
,”
PLoS ONE
,
11
(8), p. e0158348.
7.
Cuomo
,
K. M.
, and
Oppenheim
,
A. V.
,
1993
, “
Circuit Implementation of Synchronized Chaos With Applications to Communications
,”
Phys. Rev. Lett.
,
71
(
1
), pp.
65
68
.
8.
Razminia
,
A.
, and
Baleanu
,
D.
,
2013
, “
Fractional Hyperchaotic Telecommunication Systems: A New Paradigm
,”
ASME J. Comput. Nonlinear Dyn.
,
8
(
3
), p.
031012
.
9.
Wang
,
S. P.
,
Lao
,
S. K.
,
Chen
,
H. K.
,
Chen
,
J. H.
, and
Chen
,
S. Y.
,
2013
, “
Implementation of the Fractional-Order Chen–Lee System by Electronic Circuit
,”
Int. J. Bifurcation Chaos
,
23
(
2
), p. 1350030.
10.
Jie
,
L. J.
, and
Xin
,
L. C.
,
2007
, “
Realization of Fractional-Order Liu Chaotic System by Circuit
,”
Chin. Phys.
,
16
(
6
), pp.
1586
1590
.
11.
Carlson
,
G. E.
, and
Halijack
,
C. A.
,
1964
, “
Approximation of Fractional Capacitors (1/S)1/n by a Regular Newton Process
,”
IEEE Trans. Circuit Theory
,
11
(
2
), pp.
210
213
.
12.
Dar
,
M. R.
,
Kant
,
N. A.
,
Khanday
,
F. A.
, and
Psychalinos
,
C.
,
2016
, “
Fractional-Order Filter Design for Ultra-Low Frequency Applications
,”
IEEE International Conference on Recent Trends in Electronics, Information and Communication Technology
(
RTEICT
), Bangalore, India, May 20–21, Vol.
1
, pp.
1727
1730
.
13.
Tsirimokou
,
G.
, and
Psychalinos
,
C.
,
2014
, “
Ultra-Low Voltage Fractional-Order Differentiator and Integrator Topologies: An Application for Handling Noisy ECGs
,”
Analog Integr. Circuits Signal Process.
,
81
(
2
), pp.
393
405
.
14.
FOMCON, 2017, “
Overview: Fractional-Order Modeling and Control
,” Tallinn University of Technology, Tallinn, Estonia, accessed Apr. 29, 2017, http://fomcon.net/fomcon-toolbox/overview/
You do not currently have access to this content.