In order to achieve a correct representation of jointed structures within multibody dynamic simulations, an accurate computation of the nonlinear contact and friction forces between the contact surfaces is required. In recent history, trial vectors based on trial vector derivatives, the so-called joint modes, have been presented, which allow an accurate and efficient representation of this joint contact. In this paper, a systematic adaption of this method for preloaded bolted joints is presented. The new strategy leads to a lower number of additional joint modes required for accurate results and hence to lower computational time. Further, a major reduction of the computational effort for joint modes can be achieved. The potential and also possible limitations of the method are investigated using two numerical examples of a preloaded friction bar and a bolted piston rod bearing cap.

References

References
1.
Hurty
,
W. C.
,
1965
, “
Dynamic Analysis of Structural Systems Using Component Modes
,”
AIAA J.
,
3
(
4
), pp.
678
685
.
2.
Craig
,
R. R.
, and
Bampton
,
M. C. C.
,
1968
, “
Coupling of Substructures for Dynamic Analysis
,”
AIAA J.
,
6
(
7
), pp.
1313
1319
.
3.
Shabana
,
A. A.
,
2005
,
Dynamics of Multibody Systems
,
Cambridge University Press
, Cambridge, UK.
4.
Witteveen
,
W.
, and
Irschik
,
H.
,
2009
, “
Efficient Mode-Based Computational Approach for Jointed Structures: Joint Interface Modes
,”
AIAA J.
,
47
(
1
), pp.
252
263
.
5.
Segalman
,
D. J.
,
2007
, “
Model Reduction of Systems With Localized Nonlinearities
,”
ASME J. Comput. Nonlinear Dyn.
,
2
(
3
), pp.
249
266
.
6.
Witteveen
,
W.
, and
Irschik
,
H.
,
2009
, “
Efficient Computation of Joint Interface Modes
,” 27th Conference and Exposition on Structural Dynamics 2009 (
IMAC XXVII
), Orlando, FL, Feb. 9–12, pp. 1–8.https://sem.org/wp-content/uploads/2015/12/sem.org-IMAC-XXVII-Conf-s10p006-Efficient-Computation-Joint-Interface-Modes.pdf
7.
Witteveen
,
W.
, and
Sherif
,
K.
,
2011
, “
POD Based Computation of Joint Interface Modes
,”
29th IMAC, A Conference on Structural Dynamics: Linking Models and Experiments
, Vol.
2
, pp.
19
28
.http://www.springer.com/cda/content/document/cda_downloaddocument/9781441993045-c1.pdf?SGWID=0-0-45-1099142-p174099858
8.
Géradin
,
M.
, and
Rixen
,
D. J.
,
2016
, “
A ‘Nodeless’ Dual Superelement Formulation for Structural and Multibody Dynamics Application to Reduction of Contact Problems
,”
Int. J. Numer. Methods Eng.
,
106
(
10
), pp.
773
798
.
9.
Witteveen
,
W.
, and
Pichler
,
F.
,
2014
, “
Efficient Model Order Reduction for the Dynamics of Nonlinear Multilayer Sheet Structures With Trial Vector Derivatives
,”
Shock Vib.
,
2014
, p.
16
.
10.
Witteveen
,
W.
, and
Pichler
,
F.
,
2014
, “
Efficient Model Order Reduction for the Nonlinear Dynamics of Jointed Structures by the Use of Trial Vector Derivatives
,”
Dynamics of Coupled Structures
(Vol.
1
, Conference Proceedings of the Society for Experimental Mechanics Series),
Springer International Publishing
, Cham, Switzerland, pp.
147
155
.
11.
Pichler
,
F.
,
Witteveen
,
W.
, and
Fischer
,
P.
, 2016, “
A Complete Strategy for Efficient and Accurate Multibody Dynamics of Flexible Structures With Large Lap Joints Considering Contact and Friction
,”
Multibody Syst. Dyn.
, epub.
12.
Idelsohn
,
S. R.
, and
Cardona
,
A.
,
1985
, “
A Load-Dependent Basis for Reduced Nonlinear Structural Dynamics
,”
Comput. Struct.
,
20
(
1–3
), pp.
203
210
.
13.
Idelsohn
,
S. R.
, and
Cardona
,
A.
,
1985
, “
A Reduction Method for Nonlinear Structural Dynamic Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
49
(
3
), pp.
253
279
.
14.
Slaats
,
P.
,
de Jongh
,
J.
, and
Sauren
,
A.
,
1995
, “
Model Reduction Tools for Nonlinear Structural Dynamics
,”
Comput. Struct.
,
54
(
6
), pp.
1155
1171
.
15.
Wu
,
L.
, and
Tiso
,
P.
,
2016
, “
Nonlinear Model Order Reduction for Flexible Multibody Dynamics: A Modal Derivatives Approach
,”
Multibody Syst. Dyn.
,
36
(
4
), pp.
405
425
.
16.
Laursen
,
T. A.
,
2002
,
Computational Contact and Impact Mechanics: Fundamentals of Modeling Interfacial Phenomena in Nonlinear Finite Element Analysis
,
Springer-Verlag
,
Berlin
.
17.
Craig
,
R. R.
,
1985
, “
A Review of Time-Domain and Frequency-Domain Component Mode Synthesis Method
,”
Joint Mechanics Conference: Combined Experimental/Analytical Modeling of Dynamic Structural Systems
, Albuquerque, NM, June 24–26, pp.
1
30
.https://ntrs.nasa.gov/search.jsp?R=19860042139
18.
Craig
,
R. R.
, and
Kurdila
,
A. J.
,
2006
,
Fundamentals of Structural Dynamics
,
2nd ed.
,
Wiley
,
Hoboken, NJ
.
19.
Qu
,
Z.-Q.
,
2004
,
Model Order Reduction Techniques With Applications in Finite Element Analysis
,
Springer
,
London
.
20.
Chaturantabut
,
S.
, and
Sorensen
,
D. C.
,
2010
, “
Nonlinear Model Reduction Via Discrete Empirical Interpolation
,”
SIAM J. Sci. Comput.
,
32
(
5
), pp.
2737
2764
.
21.
Breitfuss
,
M.
,
Irschik
,
H.
,
Holl
,
H. J.
, and
Witteveen
,
W.
,
2014
, “
DEIM for the Efficient Computation of Contact Interface Stresses
,”
32nd IMAC, A Conference and Exposition on Structural Dynamics: Dynamics of Coupled Structures
, Vol.
1
, pp.
435
445
.
22.
Tiso
,
P.
, and
Rixen
,
D. J.
,
2013
, “
Discrete Empirical Interpolation Method for Finite Element Structural Dynamics
,”
31st IMAC, A Conference on Structural Dynamics: Topics in Nonlinear Dynamics
, Vol.
1
, pp.
203
212
.
23.
Ryckelynck
,
D.
,
2005
, “
A Priori Hypereduction Method: An Adaptive Approach
,”
J. Comput. Phys.
,
202
(
1
), pp.
346
366
.
24.
Ryckelynck
,
D.
,
2009
, “
Hyper-Reduction of Mechanical Models Involving Internal Variables
,”
Int. J. Numer. Methods Eng.
,
77
(
1
), pp.
75
89
.
25.
Farhat
,
C.
,
Avery
,
P.
,
Chapman
,
T.
, and
Cortial
,
J.
,
2014
, “
Dimensional Reduction of Nonlinear Finite Element Dynamic Models With Finite Rotations and Energy-Based Mesh Sampling and Weighting for Computational Efficiency
,”
Int. J. Numer. Methods Eng.
,
98
(
9
), pp.
625
662
.
26.
Farhat
,
C.
,
Chapman
,
T.
, and
Avery
,
P.
,
2015
, “
Structure-Preserving, Stability, and Accuracy Properties of the Energy-Conserving Sampling and Weighting Method for the Hyper Reduction of Nonlinear Finite Element Dynamic Models
,”
Int. J. Numer. Methods Eng.
,
102
(
5
), pp.
1077
1110
.
27.
Sombroek
,
C.
,
Renson
,
L.
,
Tiso
,
P.
, and
Kerschen
,
G.
,
2016
, “
Bridging the Gap Between Nonlinear Normal Modes and Modal Derivatives
,”
33rd IMAC, A Conference and Exposition on Structural Dynamics: Nonlinear Dynamics
, Vol.
1
, pp.
349
361
.
28.
Tiso
,
P.
,
2011
, “
Optimal Second Order Reduction Basis Selection for Nonlinear Transient Analysis
,”
29th IMAC, A Conference on Structural Dynamics: Modal Analysis Topics
, Vol.
3
, pp.
27
39
.
29.
Chatterjee
,
A.
,
2000
, “
An Introduction to the Proper Orthogonal Decomposition
,”
Curr. Sci.
,
78
(
7
), pp.
808
817
.http://www.currentscience.ac.in/Downloads/article_id_078_07_0808_0817_0.pdf
30.
Volkwein
,
S.
,
2014
, “
Model Reduction Using Proper Orthogonal Decomposition
,” Lecture Notes, Institute of Mathematics and Scientific Computing, University of Graz, Graz, Austria.
31.
Craig
,
R. R.
,
2000
, “
Coupling of Substructures for Dynamic Analyses: An Overview
,”
AIAA
Paper No. 2000-1573.
32.
Junge
,
M.
,
Brunner
,
D.
,
Becker
,
J.
, and
Gaul
,
L.
,
2009
, “
Interface-Reduction for the Craig–Bampton and Rubin Method Applied to FE–BE Coupling With a Large Fluid–Structure Interface
,”
Int. J. Numer. Methods Eng.
,
77
(
12
), pp.
1731
1752
.
33.
Friberg
,
O.
, and
Karhu
,
V.
,
1990
, “
Use of Mode Orthogonalization and Modal Damping in Flexible Multibody Dynamics
,”
Finite Elem. Anal. Des.
,
7
(
1
), pp.
51
59
.
34.
MSC Software
,
2013
, “
MSC.NASTRAN V2013.1.1
,” MSC Software Corporation, Newport Beach, CA.
35.
MSC Software
,
2012
, “
MSC.ADAMS V2012
,” MSC Software Corporation, Newport Beach, CA.
36.
Lenz
,
J.
, and
Gaul
,
L.
,
1995
, “
The Influence of Microslip on the Dynamic Behaviour of Bolted Joints
,”
XIII SEM International Congress
, Orlando, FL, Jan. 6–9, pp.
248
254
.https://sem.org/wp-content/uploads/2015/12/sem.org-IMAC-XIII-13th-13-8-3-The-Influence-Microslip-Dynamic-Behavior-Bolted-Joints.pdf
37.
Garino
,
C. G.
, and
Ponthot
,
J.-P.
,
2008
, “
A Quasi-Coulomb Model for Frictional Contact Interfaces: Application to Metal Forming Simulations
,”
Lat. Am. Appl. Res.
,
38
(
2
), pp.
95
104
.http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S0327-07932008000200001
38.
Hilber
,
H. M.
,
Hughes
,
T. J. R.
, and
Taylor
,
R. L.
,
1977
, “
Improved Numerical Dissipation for Time Integration Algorithms in Structural Dynamics
,”
Earthquake Eng. Struct. Dyn.
,
5
(
3
), pp.
283
292
.
39.
Negrut
,
D.
,
Rampalli
,
R.
,
Ottarsson
,
G.
, and
Sajdak
,
A.
,
2006
, “
On an Implementation of the Hilber-Hughes-Taylor Method in the Context of Index 3 Differential-Algebraic Equations of Multibody Dynamics (DETC2005-85096)
,”
ASME J. Comput. Nonlinear Dyn.
,
2
(
1
), pp.
73
85
.
40.
Dassault Systèmes
,
2012
, “
Abaqus Theory Manual 6.12
,” Dassault Systèmes, Vélizy-Villacoublay, France.
You do not currently have access to this content.