In this paper, explicit Runge–Kutta methods are investigated for numerical solutions of nonlinear dynamical systems with conserved quantities. The concept, ε-preserving is introduced to describe the conserved quantities being approximately retained. Then, a modified version of explicit Runge–Kutta methods based on the optimization technique is presented. With respect to the computational effort, the modified Runge–Kutta method is superior to implicit numerical methods in the literature. The order of the modified Runge–Kutta method is the same as the standard Runge–Kutta method, but it is superior in preserving the conserved quantities to the standard one. Numerical experiments are provided to illustrate the effectiveness of the modified Runge–Kutta method.

References

References
1.
Leimkuhler
,
B.
, and
Reich
,
S.
,
2004
,
Simulating Hamiltonian Dynamics
,
Cambridge University Press
,
Cambridge, UK
.
2.
Greiner
,
W.
,
2010
,
Classical Mechanics: Systems of Particles and Hamiltonian Dynamics
,
2nd ed.
,
Springer-Verlag
,
Berlin
.
3.
Lee
,
T.
,
Leok
,
M.
, and
McClamroch
,
N. H.
,
2007
, “
Lie Variational Integrators for the Full Body Problem in Orbital Mechanics
,”
Celestial Mech. Dyn. Astron.
,
98
(
2
), pp.
121
144
.
4.
Li
,
S.
,
2007
, “
Introduction to Classical Mechanics
,” University of Science and Technology of China, Hefei, China (in Chinese).
5.
Griffiths
,
D. F.
, and
Higham
,
D. J.
,
2010
,
Numerical Methods for Ordinary Differential Equations
,
Springer-Verlag
,
London
.
6.
Hu
,
G. D.
,
2014
, “
A Modified Version of Explicit Runge–Kutta Methods for Energy-Preserving
,”
Kybernetika
,
50
(
5
), pp.
838
847
.https://eudml.org/doc/262172
7.
Feng
,
K.
, and
Shang
,
Z.
,
1995
, “
Volume-Preserving Algorithms for Source-Free Dynamical Systems
,”
Numer. Math.
,
77
(4), pp.
451
463
.
8.
Feng
,
K.
,
1992
, “
How to Compute Properly Newton's Equation of Motion
,”
Second Conference on Numerical Methods for Partial Differential Equations
,
L. A.
Ying
and
B. Y.
Guo
, eds., World Scientific, Singapore, pp.
15
22
.
9.
Simo
,
J. C.
,
Tarnow
,
N.
, and
Wong
,
K. K.
,
1992
, “
Exact Energy-Momentum Conserving Algorithms and Symplectic Schemes for Nonlinear Dynamics
,”
Comput. Methods Appl. Mech. Eng.
,
100
(
1
), pp.
63
116
.
10.
Ascher
,
U. M.
, and
Petzold
,
L. R.
,
1998
,
Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations
,
SIAM
,
Philadelphia, PA
.
11.
McLachlan
,
R. I.
,
Quispel
,
G. R. W.
, and
Robidoux
,
N.
,
1999
, “
Geometric Integration Using Discrete Gradients
,”
Philos. Trans. R. Soc. A
,
357
(
1754
), pp.
1021
1046
.
12.
Brugnano
,
L.
, and
Sun
,
Y.
,
2014
, “
Multiple Invariants Conserving Runge–Kutta Type Methods for Hamiltonian Problems
,”
Numer. Algorithms
,
65
(
3
), pp.
611
632
.
13.
Terze
,
Z.
,
Müller
,
A.
, and
Zlatar
,
D.
,
2015
, “
An Angular Momentum and Energy Conserving Lie-Group Integration Scheme for Rigid Body Rotational Dynamics Originating From Störmer-Verlet Algorithm
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
5
), p.
051005
.
14.
Bridges
,
T. J.
,
1997
, “
Multi-Symplectic Structures and Wave Propagation
,”
Math. Proc. Cambridge Philos. Soc.
,
121
(
1
), pp.
147
190
.
15.
Hu
,
W. P.
,
Deng
,
Z. C.
,
Han
,
S. M.
, and
Zhang
,
W. R.
,
2013
, “
Generalized Multi-Symplectic Integrators for a Class of Hamiltonian Nonlinear Wave PDEs
,”
J. Comput. Phys.
,
235
, pp.
394
406
.
16.
Hu
,
W. P.
,
Deng
,
Z. C.
, and
Yin
,
T. T.
,
2017
, “
Almost Structure-Preserving Analysis for Weakly Linear Damping Nonlinear Schrödinger Equation With Periodic Perturbation
,”
Commun. Nonlinear Sci. Numer. Simul.
,
42
, pp.
298
312
.
17.
Bridges
,
T. J.
, and
Reich
,
S.
,
2001
, “
Multi-Symplectic Integrators: Numerical Schemes for Hamiltonian PDEs That Conserve Symplecticity
,”
Phys. Lett. A
,
284
(4–5), pp.
184
193
.
18.
Hu
,
W. P.
,
Deng
,
Z. C.
,
Wang
,
B.
, and
Ouyang
,
H. J.
,
2013
, “
Chaos in an Embedded Single-Walled Carbon Manotube
,”
Nonlinear Dyn.
,
72
(1), pp.
389
398
.
19.
Hu
,
W. P.
,
Deng
,
Z. C.
, and
Zhang
,
Y.
,
2014
, “
Multi-Symplectic Method for Peakon-Antipeakon Collision of Quasi-Degasperis-Procesi Equation
,”
Comput. Phys. Commun.
,
185
(
7
), pp.
2020
2028
.
20.
Hu
,
W. P.
,
Li
,
Q. J.
,
Jiang
,
X. H.
, and
Deng
,
Z. C.
,
2017
, “
Coupling Dynamic Behaviors of Spatial Flexible Beam With Weak Damping
,”
Int. J. Numer. Methods Eng.
, epub.
21.
Nocedal
,
J.
, and
Wright
,
S. J.
,
1999
,
Numerical Optimization
,
Springer-Verlag
,
New York
.
You do not currently have access to this content.