False nearest neighbors (FNN) is one of the essential methods used in estimating the minimally sufficient embedding dimension in delay-coordinate embedding of deterministic time series. Its use for stochastic and noisy deterministic time series is problematic and erroneously indicates a finite embedding dimension. Various modifications to the original method have been proposed to mitigate this problem, but those are still not reliable for noisy time series. Here, nearest-neighbor statistics are studied for uncorrelated random time series and contrasted with the corresponding deterministic and stochastic statistics. New composite FNN metrics are constructed and their performance is evaluated for deterministic, correlates stochastic, and white random time series. In addition, noise-contaminated deterministic data analysis shows that these composite FNN metrics are robust to noise. All FNN results are also contrasted with surrogate data analysis to show their robustness. The new metrics clearly identify random time series as not having a finite embedding dimension and provide information about the deterministic part of correlated stochastic processes. These metrics can also be used to differentiate between chaotic and random time series.

References

References
1.
Takens
,
F.
,
1981
, “
Detecting Strange Attractors in Turbulence
,”
Dynamical Systems and Turbulence, Warwick 1980
,
D. A.
Rand
and
L. S.
Young
, eds.,
Springer-Verlag
,
Berlin
, pp.
366
381
.
2.
Sauer
,
T.
,
Yorke
,
J. A.
, and
Casdagli
,
M.
,
1991
, “
Embedology
,”
J. Stat. Phys.
,
65
(
3–4
), pp.
579
616
.
3.
Molkov
,
Y. I.
,
Mukhin
,
D.
,
Loskutov
,
E.
,
Feigin
,
A.
, and
Fidelin
,
G.
,
2009
, “
Using the Minimum Description Length Principle for Global Reconstruction of Dynamic Systems From Noisy Time Series
,”
Phys. Rev. E
,
80
(
4
), p.
046207
.
4.
Pecora
,
L. M.
,
Moniz
,
L.
,
Nichols
,
J.
, and
Carroll
,
T. L.
,
2007
, “
A Unified Approach to Attractor Reconstruction
,”
Chaos
,
17
(
1
), p.
013110
.
5.
Kember
,
G.
, and
Fowler
,
A.
,
1993
, “
A Correlation Function for Choosing Time Delays in Phase Portrait Reconstructions
,”
Phys. Lett. A
,
179
(
2
), pp.
72
80
.
6.
Fraser
,
A. M.
,
1989
, “
Reconstructing Attractors From Scalar Time Series: A Comparison of Singular System and Redundancy Criteria
,”
Physica D
,
34
(
3
), pp.
391
404
.
7.
Fraser
,
A. M.
, and
Swinney
,
H. L.
,
1986
, “
Independent Coordinates for Strange Attractors From Mutual Information
,”
Phys. Rev. A
,
33
(
2
), p.
1134
.
8.
Grassberger
,
P.
,
Schreiber
,
T.
, and
Schaffrath
,
C.
,
1991
, “
Nonlinear Time Sequence Analysis
,”
Int. J. Bifurcation Chaos
,
1
(
3
), pp.
521
547
.
9.
Broomhead
,
D. S.
, and
King
,
G. P.
,
1986
, “
Extracting Qualitative Dynamics From Experimental Data
,”
Physica D
,
20
(
2
), pp.
217
236
.
10.
Gibson
,
J. F.
,
Doyne Farmer
,
J.
,
Casdagli
,
M.
, and
Eubank
,
S.
,
1992
, “
An Analytic Approach to Practical State Space Reconstruction
,”
Physica D
,
57
(
1
), pp.
1
30
.
11.
Rosenstein
,
M. T.
,
Collins
,
J. J.
, and
De Luca
,
C. J.
,
1994
, “
Reconstruction Expansion as a Geometry-Based Framework for Choosing Proper Delay Times
,”
Physica D
,
73
(
1
), pp.
82
98
.
12.
Kugiumtzis
,
D.
,
1996
, “
State Space Reconstruction Parameters in the Analysis of Chaotic Time Series-the Role of the Time Window Length
,”
Physica D
,
95
(
1
), pp.
13
28
.
13.
Cao
,
L.
,
Mees
,
A.
, and
Judd
,
K.
,
1998
, “
Dynamics From Multivariate Time Series
,”
Physica D
,
121
(
1
), pp.
75
88
.
14.
Judd
,
K.
, and
Mees
,
A.
,
1998
, “
Embedding as a Modeling Problem
,”
Physica D
,
120
(
3
), pp.
273
286
.
15.
Kim
,
H.
,
Eykholt
,
R.
, and
Salas
,
J.
,
1999
, “
Nonlinear Dynamics, Delay Times, and Embedding Windows
,”
Physica D
,
127
(
1
), pp.
48
60
.
16.
Small
,
M.
, and
Tse
,
C. K.
,
2004
, “
Optimal Embedding Parameters: A Modelling Paradigm
,”
Physica D
,
194
(
3
), pp.
283
296
.
17.
Maus
,
A.
, and
Sprott
,
J.
,
2011
, “
Neural Network Method for Determining Embedding Dimension of a Time Series
,”
Commun. Nonlinear Sci. Numer. Simul.
,
16
(
8
), pp.
3294
3302
.
18.
Chatzinakos
,
C.
, and
Tsouros
,
C.
,
2015
, “
Estimation of the Dimension of Chaotic Dynamical Systems Using Neural Networks and Robust Location Estimate
,”
Simul. Modell. Pract. Theory
,
51
, pp.
149
156
.
19.
Kantz
,
H.
, and
Schreiber
,
T.
,
2004
,
Nonlinear Time Series Analysis
, 2nd ed.,
Cambridge University Press
, Cambridge, UK.
20.
Abarbanel
,
H.
,
1996
,
Analysis of Observed Chaotic Data
,
Springer
,
New York
.
21.
Kennel
,
M. B.
, and
Abarbanel
,
H. D.
,
2002
, “
False Neighbors and False Strands: A Reliable Minimum Embedding Dimension Algorithm
,”
Phys. Rev. E
,
66
(
2
), p.
026209
.
22.
Kennel
,
M. B.
,
Brown
,
R.
, and
Abarbanel
,
H. D.
,
1992
, “
Determining Embedding Dimension for Phase-Space Reconstruction Using a Geometrical Construction
,”
Phys. Rev. A
,
45
(
6
), p.
3403
.
23.
Cao
,
L.
,
1997
, “
Practical Method for Determining the Minimum Embedding Dimension of a Scalar Time Series
,”
Physica D
,
110
(
1
), pp.
43
50
.
24.
Hegger
,
R.
, and
Kantz
,
H.
,
1999
, “
Improved False Nearest Neighbor Method to Detect Determinism in Time Series Data
,”
Phys. Rev. E
,
60
(
4
), p.
4970
.
25.
Kazem
,
A.
,
Sharifi
,
E.
,
Hussain
,
F. K.
,
Saberi
,
M.
, and
Hussain
,
O. K.
,
2013
, “
Support Vector Regression With Chaos-Based Firefly Algorithm for Stock Market Price Forecasting
,”
Appl. Soft Comput.
,
13
(
2
), pp.
947
958
.
26.
Hanslmeier
,
A.
,
Brajša
,
R.
,
Čalogović
,
J.
,
Vršnak
,
B.
,
Ruždjak
,
D.
,
Steinhilber
,
F.
,
MacLeod
,
C.
,
Ivezić
,
Ž.
, and
Skokić
,
I.
,
2013
, “
The Chaotic Solar Cycle—II: Analysis of Cosmogenic 10Be Data
,”
Astron. Astrophys.
,
550
, p.
A6
.
27.
Wernitz
,
B.
, and
Hoffmann
,
N.
,
2012
, “
Recurrence Analysis and Phase Space Reconstruction of Irregular Vibration in Friction Brakes: Signatures of Chaos in Steady Sliding
,”
J. Sound Vib.
,
331
(
16
), pp.
3887
3896
.
28.
Hampson
,
K. M.
, and
Mallen
,
E. A.
,
2012
, “
Chaos in Ocular Aberration Dynamics of the Human Eye
,”
Biomed. Opt. Express
,
3
(
5
), pp.
863
877
.
29.
Lorenz
,
E. N.
,
1963
, “
Deterministic Nonperiodic Flow
,”
J. Atmos. Sci.
,
20
(
2
), pp.
130
141
.
30.
Duffing
,
G.
,
1918
,
Erzwungene Schwingungen bei veränderlicher Eigenfrequenz und ihre technische Bedeutung
, Vol.
41–42
,
R, Vieweg & Sohn
, Braunschweig, Germany.
31.
Sprott
,
J. C.
, and
Sprott
,
J. C.
,
2003
,
Chaos and Time-Series Analysis
, Vol.
69
,
Oxford University Press
,
Oxford, UK
.
32.
Schreiber
,
T.
, and
Schmitz
,
A.
,
1996
, “
Improved Surrogate Data for Nonlinearity Tests
,”
Phys. Rev. Lett.
,
77
(
4
), p.
635
.
33.
Hegger
,
R.
,
Kantz
,
H.
, and
Schreiber
,
T.
,
1999
, “
Practical Implementation of Nonlinear Time Series Methods: The TISEAN Package
,”
Chaos
,
9
(
2
), pp.
413
435
.
34.
Golub
,
G. H.
, and
Van Loan
,
C. F.
,
1996
,
Matrix Computations
,
JHU Press
, Baltimore, MD.
35.
Theiler
,
J.
,
1991
, “
Some Comments on the Correlation Dimension of 1/fα Noise
,”
Phys. Lett. A
,
155
(
8
), pp.
480
493
.
36.
Theiler
,
J.
,
1990
, “
Statistical Precision of Dimension Estimators
,”
Phys. Rev. A
,
41
(
6
), p.
3038
.
37.
Gut
,
A.
,
2009
,
An Intermediate Course in Probability
,
Springer
, New York.
You do not currently have access to this content.