Oscillatory behavior and transfer properties of relay feedback systems with a linear plant including a fractional-order integrator are studied in this paper. An expression for system response in the time domain is obtained by means of short memory principle, Poincare return map, and Mittag–Leffler functions. On the basis of this expression, the frequency of self-excited oscillations is approximated. In addition, the locus of perturbed relay system (LPRS) is derived to analyze the input–output properties of the relay system. The presented analysis is supported by a numerical example.

References

References
1.
Tarbouriech
,
S.
,
Prieur
,
C.
, and
Queinnec
,
I.
,
2010
, “
Stability Analysis for Linear Systems With Input Backlash Through Sufficient LMI Conditions
,”
Automatica
,
46
(
11
), pp.
1911
1915
.
2.
Shen
,
T.
,
Wang
,
Xi.
, and
Yuan
,
Zh.
,
2010
, “
Stability Analysis for a Class of Digital Filters With Single Saturation Nonlinearity
,”
Automatica
,
46
(
12
), pp.
2112
2115
.
3.
Liua
,
K. Z.
, and
Akasaka
,
D.
,
2014
, “
A Partial Parameterization of Nonlinear Output Feedback Controllers for Saturated Linear Systems
,”
Automatica
,
50
(
1
), pp.
233
239
.
4.
Lens
,
H.
,
Adamy
,
J.
, and
Yankulova
,
D. D.
,
2011
, “
A Fast Nonlinear Control Method for Linear Systems With Input Saturation
,”
Automatica
,
47
(
4
), pp.
857
860
.
5.
Zou
,
X.
,
Luo
,
J.
, and
Cao
,
C.
,
2013
, “
Adaptive Control for Uncertain Hysteretic Systems
,”
ASME J. Dyn. Syst. Meas. Control
,
136
(
1
), p.
011011
.
6.
Yu
,
W.
,
Wilson
,
D. I.
, and
Young
,
B. R.
,
2010
, “
Nonlinear Control Performance Assessment in the Presence of Valve Stiction
,”
J. Process Control
,
20
(
6
), pp.
754
761
.
7.
Esbrook
,
A.
,
Tana
,
X.
, and
Khalil
,
H.
,
2014
, “
Self-Excited Limit Cycles in an Integral-Controlled System With Backlash
,”
IEEE Trans. Autom. Control
,
59
(
4
), pp.
1020
1025
.
8.
Tana
,
X.
, and
Baras
,
J. S.
,
2004
, “
Modeling and Control of Hysteresis in Magnetostrictive Actuators
,”
Automatica
,
40
(
9
), pp.
1469
1480
.
9.
Lou
,
A. C.
, and
Patel
,
M. T.
,
2009
, “
Bifurcation and Stability of Periodic Motions in a Periodically Forced Oscillator With Multiple Discontinuities
,”
ASME J. Comput. Nonlinear Dyn.
,
4
(
1
), p.
011011
.
10.
Ozdemir
,
N.
, and
Iskender
,
B. B.
,
2010
, “
Fractional Order Control of Fractional Diffusion Systems Subject to Input Hysteresis
,”
ASME J. Comput. Nonlinear Dyn.
,
5
(
2
), p.
021002
.
11.
Pascal
,
M.
,
2008
, “
Dynamics of Coupled Oscillators Excited by Dry Friction
,”
ASME J. Comput. Nonlinear Dyn.
,
3
(
3
), p.
031009
.
12.
Tsypkin
,
Y. Z.
,
1984
,
Relay Control Systems
,
Cambridge University Press
,
Cambridge, UK
.
13.
Atherton
,
D. P.
,
1975
, “
Analysis and Design of Relay Control System
,”
CAD for Control Systems
,
D. A.
Linkens
, ed.,
Marcel Dekker
,
New York
.
14.
Yu
,
C. C.
,
1999
,
Autotuning of PID Controllers
,
Springer
,
London
.
15.
Wang
,
Q. G.
,
Hang
,
C. C.
, and
Zou
,
B.
,
2000
, “
Multivariable Process Identification and Control From Decentralized Relay Feedback
,”
Int. J. Model. Simul.
,
20
(
4
), pp.
341
348
.http://www.tandfonline.com/doi/abs/10.1080/02286203.2000.11442176
16.
Astrom
,
K. J.
,
1995
, “
Oscillations in Systems With Relay Feedback
,”
Adaptive Control, Filtering, and Signal Processing
(IMA Volumes in Mathematics and Its Applications), Vol.
74
,
Springer
,
New York
, pp.
1
25
.
17.
Wang
,
Q.-G.
,
Lee
,
T. H.
, and
Lin
,
C.
,
2003
,
Relay Feedback: Analysis, Identification and Control
,
Springer
,
London
.
18.
Ye
,
Z.
,
Wang
,
Q. G.
,
Lin
,
C.
, and
Barabanov
,
A. E.
,
2007
, “
Relay Feedback Analysis for a Class of Servo Plants
,”
J. Math. Anal. Appl.
,
334
(
1
), pp.
28
42
.
19.
Xu
,
H.
, and
Wen
,
G.
,
2014
, “
Alternative Criterion for Investigation of Pitchfork Bifurcations of Limit Cycle in Relay Feedback Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(
3
), p.
031004
.
20.
Boiko
,
I.
,
2005
, “
Oscillations and Transfer Properties of Relay Servo Systems—The Locus of a Perturbed Relay System Approach
,”
Automatica
,
41
(
4
), pp.
677
683
.
21.
Boiko
,
I.
,
1999
, “
Input–Output Analysis of Limit Cycling Relay Feedback Control Systems
,”
American Control Conference
(
ACC
), San Diego, CA, June 2–4, Vol.
1
, pp.
542
546
.
22.
Boiko
,
I.
,
2007
, “
Analysis of Closed-Loop Performance and Frequency-Domain Design of Compensating Filters for Sliding-Mode Control Systems
,”
IEEE Trans. Autom. Control
,
52
(
10
), pp.
1882
1891
.
23.
Boiko
,
I.
,
2008
, “
Oscillations and Transfer Properties of Relay Servo Systems With Integrating Plants
,”
IEEE Trans. Autom. Control
,
53
(
11
), pp.
2686
2689
.
24.
Petras
,
I.
,
2011
,
Fractional-Order Nonlinear Systems
,
Springer
, London.
25.
Pudlubny
,
I.
,
1999
,
Fractional Differential Equation
,
Academic Press
, Millbrae, CA.
26.
Tötterman
,
S.
, and
Toivonen
,
H. T.
,
2009
, “
Support Vector Method for Identification of Wiener Models
,”
J. Process Control
,
19
(
7
), pp.
1174
1181
.
27.
Wills
,
A.
,
Schön
,
T. B.
,
Ljung
,
L.
, and
Ninness
,
B.
,
2011
, “
Blind Identification of Wiener Models
,”
IFAC Proc. Vol.
,
44
(
1
), pp.
5597
5602
.
28.
Feliu-Talegon
,
D.
,
San-Millan
,
A.
, and
Feliu-Batlle
,
V.
,
2016
, “
Fractional-Order Integral Resonant Control of Collocated Smart Structures
,”
Control Eng. Pract.
,
56
, pp.
210
223
.
29.
Gomez
,
J. C.
,
Jutan
,
A.
, and
Baeyens
,
E.
,
2004
, “
Wiener Model Identification and Predictive Control of a pH Neutralisation Process
,”
IEEE Proc. Control Theory Appl.
,
151
(
3
), pp.
329
338
.
30.
Wang
,
Q.
, and
Zhang
,
J.
,
2011
, “
Wiener Model Identification and Nonlinear Model Predictive Control of a pH Neutralization Process Based on Laguerre Filters and Least Squares Support Vector Machines
,”
J. Zhejiang Univ., Sci., C
,
12
(
1
), pp.
25
35
.
31.
Mitrishkin
,
Y. V.
,
Pavlova
,
E. A.
,
Kuznetsov
,
E. A.
, and
Gaydamakac
,
K. I.
,
2016
, “
Continuous, Saturation, and Discontinuous Tokamak Plasma Vertical Position Control Systems
,”
Fusion Eng. Des.
,
108
, pp.
35
47
.
32.
Srinivasan
,
A.
, and
Lakshmi
,
P.
,
2008
, “
Identification and Control of Wiener Type Process Applied to Real-Time Heat Exchanger
,”
Asia-Pac. J. Chem. Eng.
,
3
(
6
), pp.
622
629
.
33.
Ferretti
,
G.
,
2004
, “
Single and Multistate Integral Friction Models
,”
IEEE Trans. Autom. Control
,
49
(
12
), pp.
2292
2297
.
34.
Hsu
,
J. C.
, and
Meyer
,
A. U.
,
1968
,
Modern Control Principles and Applications
,
McGraw-Hill
,
New York
.
35.
Diethelm
,
K.
,
Ford
,
N. J.
, and
Freed
,
A. D.
,
2002
, “
A Predictor-Corrector Approach for the Numerical Solution of Fractional Differential Equations
,”
Nonlinear Dyn.
,
29
(
1
), pp.
3
22
.
36.
Tavazoei
,
M. S.
, and
Haeri
,
M.
,
2007
, “
Unreliability of Frequency-Domain Approximation in Recognising Chaos in Fractional-Order Systems
,”
IET Signal Process.
,
1
(
4
), pp.
171
181
.
You do not currently have access to this content.