Since the solutions of the fractional differential equations (FDEs) have unbounded derivatives at zero, their numerical solutions by piecewise polynomial collocation method on uniform meshes will lead to poor convergence rates. This paper presents a piecewise nonpolynomial collocation method for solving such equations reflecting the singularity of the exact solution. The entire domain is divided into several small subdomains, and the nonpolynomial pieces are constructed using a block-by-block scheme on each subdomain. The method is applied to solve linear and nonlinear fractional differential equations. Numerical examples are given and discussed to illustrate the effectiveness of the proposed approach.

References

References
1.
Atanacković
,
T. M.
,
Pilipović
,
S.
,
Stanković
,
B.
, and
Zorica
,
D.
,
2014
,
Fractional Calculus With Applications in Mechanics: Vibrations and Diffusion Processes
,
ISTE, London/Wiley
,
Hoboken, NJ
.
2.
Baleanu
,
D.
,
Diethelm
,
K.
,
Scalas
,
E.
, and
Trujillo
,
J. J.
,
2016
,
Fractional Calculus: Models and Numerical Methods
,
2nd ed.
,
World Scientific
,
Singapore
.
3.
Hilfer
,
R.
, ed.,
2000
,
Applications of Fractional Calculus in Physics
,
World Scientific
,
River Edge, NJ
.
4.
Podlubny
,
I.
,
1999
,
Fractional Differential Equations
,
Academic Press
,
San Diego, CA
.
5.
Diethelm
,
K.
,
2010
,
The Analysis of Fractional Differential Equations
,
Springer
,
Berlin
.
6.
Li
,
C.
, and
Zeng
,
F.
,
2015
,
Numerical Methods for Fractional Calculus
,
Chapman and Hall/CRC
,
London
.
7.
Garrappa
,
R.
, and
Popolizio
,
M.
,
2011
, “
On Accurate Product Integration Rules for Linear Fractional Differential Equations
,”
J. Comput. Appl. Math.
,
235
(
5
), pp.
1085
1097
.
8.
Garrappa
,
R.
, and
Popolizio
,
M.
,
2011
, “
Generalized Exponential Time Differencing Methods for Fractional Order Problems
,”
Comput. Math. Appl.
,
62
(
3
), pp.
876
890
.
9.
Doha
,
E. H.
,
Bhrawy
,
A. H.
, and
Ezz-Eldien
,
S. S.
,
2011
, “
A Chebyshev Spectral Method Based on Operational Matrix for Initial and Boundary Value Problems of Fractional Order
,”
Comput. Math. Appl.
,
62
(
5
), pp.
2364
2373
.
10.
Esmaeili
,
S.
,
Shamsi
,
M.
, and
Luchko
,
Y.
,
2011
, “
Numerical Solution of Fractional Differential Equations With a Collocation Method Based on Müntz Polynomials
,”
Comput. Math. Appl.
,
62
(
3
), pp.
918
929
.
11.
Yan
,
Y.
,
Pal
,
K.
, and
Ford
,
N. J.
,
2014
, “
Higher Order Numerical Methods for Solving Fractional Differential Equations
,”
BIT Numer. Math.
,
54
(
2
), pp.
555
584
.
12.
Ford
,
N. J.
,
Morgado
,
M. L.
, and
Rebelo
,
M.
,
2015
, “
A Nonpolynomial Collocation Method for Fractional Terminal Value Problems
,”
J. Comput. Appl. Math.
,
275
, pp.
392
402
.
13.
Firoozjaee
,
M. A.
,
Yousefi
,
S. A.
,
Jafari
,
H.
, and
Baleanu
,
D.
,
2015
, “
On a Numerical Approach to Solve Multi-Order Fractional Differential Equations With Initial/Boundary Conditions
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
6
), p.
061025
.
14.
Esmaeili
,
S.
,
Shamsi
,
M.
, and
Dehghan
,
M.
,
2013
, “
Numerical Solution of Fractional Differential Equations Via a Volterra Integral Equation Approach
,”
Cent. Eur. J. Phys.
,
11
(
10
), pp.
1470
1481
.
15.
Zayernouri
,
M.
, and
Karniadakis
,
G. E.
,
2013
, “
Fractional Sturm–Liouville Eigen-Problems: Theory and Numerical Approximation
,”
J. Comput. Phys.
,
252
, pp.
495
517
.
16.
Ford
,
N. J.
,
Morgado
,
M. L.
, and
Rebelo
,
M.
,
2013
, “
Nonpolynomial Collocation Approximation of Solutions to Fractional Differential Equations
,”
Fractional Calculus Appl. Anal.
,
16
(
4
), pp.
874
891
.
17.
Eslahchi
,
M. R.
,
Dehghan
,
M.
, and
Parvizi
,
M.
,
2014
, “
Application of the Collocation Method for Solving Nonlinear Fractional Integro-Differential Equations
,”
J. Comput. Appl. Math.
,
257
, pp.
105
128
.
18.
Doha
,
E. H.
,
Bhrawy
,
A. H.
,
Baleanu
,
D.
, and
Hafez
,
R. M.
,
2014
, “
A New Jacobi Rational-Gauss Collocation Method for Numerical Solution of Generalized Pantograph Equations
,”
Appl. Numer. Math.
,
77
, pp.
43
54
.
19.
Huang
,
C.
,
Jiao
,
Y.
,
Wang
,
L.-L.
, and
Zhang
,
Z.
,
2016
, “
Optimal Fractional Integration Preconditioning and Error Analysis of Fractional Collocation Method Using Nodal Generalized Jacobi Functions
,”
SIAM J. Numer. Anal.
,
54
(
6
), pp.
3357
3387
.
20.
Baffet
,
D.
, and
Hesthaven
,
J. S.
,
2017
, “
A Kernel Compression Scheme for Fractional Differential Equations
,”
SIAM J. Numer. Anal.
,
55
(
2
), pp.
496
520
.
21.
Brunner
,
H.
,
2004
,
Collocation Methods for Volterra Integral and Related Functional Equations
,
Cambridge University Press
,
Cambridge, UK
.
22.
Cao
,
Y.
,
Herdman
,
T.
, and
Xu
,
Y.
,
2003
, “
A Hybrid Collocation Method for Volterra Integral Equations With Weakly Singular Kernels
,”
SIAM. J. Numer. Anal.
,
41
(
1
), pp.
364
381
.
23.
Pedas
,
A.
, and
Tamme
,
E.
,
2014
, “
Numerical Solution of Nonlinear Fractional Differential Equations by Spline Collocation Methods
,”
J. Comput. Appl. Math.
,
255
, pp.
216
230
.
24.
Kolk
,
M.
,
Pedas
,
A.
, and
Tamme
,
E.
,
2015
, “
Modified Spline Collocation for Linear Fractional Differential Equations
,”
J. Comput. Appl. Math.
,
283
, pp.
28
40
.
25.
Abramowitz
,
M.
, and
Stegun
,
I. A.
,
1972
,
Handbook of Mathematical Functions
,
Dover
,
New York
.
26.
Esmaeili
,
S.
, and
Milovanović
,
G. V.
,
2014
, “
Nonstandard Gauss–Lobatto Quadrature Approximation to Fractional Derivatives
,”
Fractional Calculus Appl. Anal.
,
17
(
4
), pp.
1075
1099
.
27.
Zayernouri
,
M.
, and
Karniadakis
,
G. E.
,
2014
, “
Fractional Spectral Collocation Method
,”
SIAM J. Sci. Comput.
,
36
(
1
), pp.
40
62
.
28.
Garrappa
,
R.
,
2015
, “
Numerical Evaluation of Two and Three Parameter Mittag–Leffler Functions
,”
SIAM J. Numer. Anal.
,
53
(
3
), pp.
1350
1369
.
29.
Rossikhin
,
Y. A.
, and
Shitikova
,
M. V.
,
2010
, “
Application of Fractional Calculus for Dynamic Problems of Solid Mechanics: Novel Trends and Recent Result
,”
ASME Appl. Mech. Rev.
,
63
(
1
), p.
010801
.
You do not currently have access to this content.