This paper developed a detailed fluid dynamics model and a parallel computing scheme for air brake systems on long freight trains. The model consists of subsystem models for pipes, locomotive brake valves, and wagon brake valves. A new efficient hose connection boundary condition that considers pressure loss across the connection was developed. Simulations with 150 sets of wagon brake systems were conducted and validated against experimental data; the simulated results and measured results reached an agreement with the maximum difference of 15%; all important air brake system features were well simulated. Computing time was compared for simulations with and without parallel computing. The computing time for the conventional sequential computing scheme was about 6.7 times slower than real-time. Parallel computing using four computing cores decreased the computing time by 70%. Real-time simulations were achieved by parallel computing using eight computer cores.

References

References
1.
Cruceanu
,
C.
,
2012
, “
Train Braking
,”
Reliability and Safety in Railway
,
X.
Perpinya
, ed.,
InTech
,
Rijeka, Croatia
, pp.
29
74
.
2.
Aboubakr
,
A. K.
,
Volpi
,
M.
,
Shabana
,
A. A.
,
Cheli
,
F.
, and
Melzi
,
S.
,
2016
, “
Implementation of Electronically Controlled Pneumatic Brake Formulation in Longitudinal Train Dynamics Algorithms
,”
Proc. Inst. Mech. Eng., Part K
,
230
(
4
), pp.
505
526
.
3.
Abdol-Hamid
,
K. S.
,
Limbert
,
D. E.
,
Gauthier
,
R. G.
, Chapman, G. A., and Vaughn, L. E.,
1986
, “
Simulation of a Freight Train Air Brake System
,”
ASME
Paper No. 86-WA/RT-15.
4.
Wu
,
Q.
,
Spiryagin
,
M.
, and
Cole
,
C.
,
2016
, “
Longitudinal Train Dynamics: An Overview
,”
Veh. Syst. Dyn.
,
54
(
12
), pp.
1688
1714
.
5.
Murtaza
,
M. A.
, and
Garg
,
B. L.
,
1993
, “
Railway Air Brake Simulation: An Empirical Approach
,”
Proc. Inst. Mech. Eng., Part F
,
207
(
F1
), pp.
51
56
.
6.
Nasr
,
A.
, and
Mohammadi
,
S.
,
2010
, “
The Effects of Train Brake Delay Time on In-Train Forces
,”
Proc. Inst. Mech. Eng., Part F
,
224
(
6
), pp.
523
534
.
7.
Wu
,
Q.
,
Luo
,
S.
, and
Cole
,
C.
,
2014
, “
Longitudinal Dynamics and Energy Analysis for Heavy Haul Trains
,”
J. Mod. Transp.
,
22
(
3
), pp.
127
136
.
8.
Oprea
,
R. A.
,
Cruceanu
,
C.
, and
Spiroiu
,
M. A.
,
2013
, “
Alternative Friction Models for Braking Train Dynamics
,”
Veh. Syst. Dyn.
,
51
(
3
), pp.
460
480
.
9.
Specchia
,
S.
,
Afshari
,
A.
,
Shabana
,
A.
, and
Caldwell
,
N.
,
2013
, “
A Train Air Brake Force Model: Locomotive Automatic Brake Valve and Brake Pipe Flow Formulations
,”
Proc. Inst. Mech. Eng., Part F
,
227
(
1
), pp.
19
37
.
10.
Afshari
,
A.
,
Specchia
,
S.
,
Shabana
,
A.
, and
Caldwell
,
N.
,
2013
, “
A Train Air Brake Force Model: Car Control Unit and Numerical Results
,”
Proc. Inst. Mech. Eng., Part F
,
227
(
1
), pp.
38
55
.
11.
Johnson
,
M. R.
,
Booth
,
G. F.
, and
Mattoon
,
D. W.
,
1986
, “
Development of Practical Techniques for the Simulation of Train Air Brake Operation
,”
ASME
Paper No. 86-WA/RT-4.
12.
Pugi
,
L.
,
Malvezzi
,
M.
,
Allotta
,
B.
, Banchi, L., and Presciani, P.,
2004
, “
A Parametric Library for the Simulation of a Union Internationale des Chemins de Fer (UIC) Pneumatic Braking System
,”
Proc. Inst. Mech. Eng., Part F
,
218
(
2
), pp.
117
132
.
13.
Piechowiak
,
T.
,
2009
, “
Pneumatic Train Brake Simulation Method
,”
Veh. Syst. Dyn.
,
47
(
12
), pp.
1473
1492
.
14.
Wei
,
W.
,
Hu
,
Y.
,
Wu
,
Q.
, Zhao, X., Zhang, J., and Zhang, Y.,
2016
, “
An Air Brake Model for Longitudinal Train Dynamics Studies
,”
Veh. Syst. Dyn.
,
55
(
4
), pp.
517
533
.
15.
Wei
,
W.
, and
Lin
,
Y.
,
2009
, “
Simulation of a Freight Train Brake System With 120 Valves
,”
Proc. Inst. Mech. Eng., Part F
,
223
(
1
), pp.
85
92
.
16.
Belforte
,
P.
,
Cheli
,
F.
,
Diana
,
G.
, and
Melzi
,
S.
,
2008
, “
Numerical and Experimental Approach for the Evaluation of Severe Longitudinal Dynamics of Heavy Freight Trains
,”
Veh. Syst. Dyn.
,
46
(
s1
), pp.
937
955
.
17.
Cantone
,
L.
,
2011
, “
TrainDy: The New Union Internationale Des Chemins de Fer Software for Freight Train Interoperability
,”
Proc. Inst. Mech. Eng., Part F
,
225
(
1
), pp.
57
70
.
18.
Benson
,
R. S.
,
Horlock
,
J. H.
, and
Winterbone
,
D. E.
,
1982
,
Thermodynamics and Gas Dynamics of Internal-Combustion Engines
, Vol.
1
,
Clarendon Press
,
Oxford, UK
.
19.
Sun
,
S.
,
2014
, “
Research on Heavy Haul Train Longitudinal Impulse Dynamics
,” Ph.D. thesis, Southwest Jiaotong University, Chengdu, China.
20.
Wu
,
Q.
, and
Cole
,
C.
,
2015
, “
Computing Schemes for Longitudinal Train Dynamics: Sequential, Parallel and Hybrid
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
6
), p.
064502
.
21.
Shabana
,
A.
,
Aboubakr
,
A.
, and
Ding
,
L.
,
2012
, “
Use of the Non-Inertial Coordinates in the Analysis of Train Longitudinal Forces
,”
ASME J. Comput. Nonlinear Dyn.
,
7
(
1
), p.
011001
.
22.
Bharath
,
S.
,
Nakra
,
B. C.
, and
Gupta
,
K. N.
,
1990
, “
Mathematical Model of a Railway Pneumatic Brake System With Varying Cylinder Capacity Effects
,”
ASME J. Dyn. Syst., Meas., Control
,
112
(
9
), pp.
456
462
.
23.
Pugi
,
L.
,
Palazzolo
,
A.
, and
Fioravanti
,
D.
,
2008
, “
Simulation of Railway Brake Plants: An Application to SAADKMS Freight Wagons
,”
Proc. Inst. Mech. Eng., Part F
,
222
(
4
), pp.
321
329
.
24.
Negrut
,
D.
,
Serban
,
R.
,
Mazhar
,
H.
, and
Heyn
,
T.
,
2014
, “
Parallel Computing in Multibody System Dynamics: Why, When, and How
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(
4
), p.
041007
.
25.
Sugiyama
,
H.
,
Yamashita
,
S.
, and
Suda
,
Y.
,
2010
, “
Curving Simulation of Ultralow-Floor Light Rail Vehicles With Independently Rotating Wheelsets
,”
ASME
Paper No. IMECE2010-37286.
26.
Wu
,
Q.
,
Spiryagin
,
M.
, and
Cole
,
C.
,
2017
, “
Parallel Computing Scheme for Three-Dimensional Long Train System Dynamics
,”
ASME J. Comput. Nonlinear Dyn.
,
12
(
4
), p.
044502
.
27.
Eberhard
,
P.
,
Dignath
,
F.
, and
Kubler
,
L.
,
2003
, “
Parallel Evolutionary Optimization of Multibody Systems With Application to Railway Dynamics
,”
Multibody Syst. Dyn.
,
9
(
2
), pp.
143
164
.
28.
Wu
,
Q.
,
Cole
,
C.
, and
Spiryagin
,
M.
,
2016
, “
Parallel Computing Enables Whole-Trip Train Dynamics Optimizations
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
4
), p.
044503
.
29.
Central Queensland University
,
2015
, “
High Performance Computing
,” Central Queensland University, Rockhampton, Queensland, Australia, accessed Nov. 25, 2015, https://www.cqu.edu.au/hpc
30.
Balaji
,
P.
,
Bland
,
W.
,
Gropp
,
W.
, Latham, R., Lu, H., Pena, A. J., Raffenetti, K., Thakur, R., and Zhang, J.,
2014
, “
MPICH User's Guide, Version 3.1.1
,”
Mathematics and Computer Science Division Argonne National Laboratory
, Argonne, IL.
You do not currently have access to this content.