The influence of a nonlinear tuned vibration absorber (NLTVA) on the airfoil flutter is investigated. In particular, its effect on the instability threshold and the potential subcriticality of the bifurcation is analyzed. For that purpose, the airfoil is modeled using the classical pitch and plunge aeroelastic model together with a linear approach for the aerodynamic loads. Large amplitude motions of the airfoil are taken into account with nonlinear restoring forces for the pitch and plunge degrees-of-freedom. The two cases of a hardening and a softening spring behavior are investigated. The influence of each NLTVA parameter is studied, and an optimum tuning of these parameters is found. The study reveals the ability of the NLTVA to shift the instability, avoid its possible subcriticality, and reduce the limit cycle oscillations (LCOs) amplitude.

References

References
1.
Vipperman
,
J. S.
,
Clark
,
R. L.
,
Conner
,
M.
, and
Dowell
,
E. H.
,
1998
, “
Experimental Active Control of a Typical Section Using a Trailing-Edge Flap
,”
J. Aircr.
,
35
(
2
), pp.
224
229
.
2.
Karpel
,
M.
,
1982
, “
Design for Active Flutter Suppression and Gust Alleviation Using State-Space Aeroelastic Modeling
,”
J. Aircr.
,
19
(
3
), pp.
221
227
.
3.
Ko
,
J.
,
Kurdila
,
A. J.
, and
Strganac
,
T. W.
,
1997
, “
Nonlinear Control of a Prototypical Wing Section With Torsional Nonlinearity
,”
J. Guid., Control, Dyn.
,
20
(
6
), pp.
1181
1189
.
4.
Heeg
,
J.
,
1993
, “
Analytical and Experimental Investigation of Flutter Suppression by Piezoelectric Actuation
,” NASA Langley Research Center, Hampton, VA, Technical Report No.
NASA-TP-3241
.
5.
Dowell
,
E. H.
,
2004
,
A Modern Course in Aeroelasticity
,
Kluwer Academic Publishers
, Boston, MA.
6.
Malher
,
A.
,
Doaré
,
O.
, and
Touzé
,
C.
,
2017
, “
Influence of a Hysteretic Damper on the Flutter Instability
,”
J. Fluids Struct.
,
68
, pp.
356
369
.
7.
Kwon
,
S.-D.
, and
Park
,
K.-S.
,
2004
, “
Suppression of Bridge Flutter Using Tuned Mass Dampers Based on Robust Performance Design
,”
J. Wind Eng. Ind. Aerodyn.
,
92
(
11
), pp.
919
934
.
8.
Vaurigaud
,
B.
,
Manevitch
,
L. I.
, and
Lamarque
,
C.-H.
,
2011
, “
Passive Control of Aeroelastic Instability in a Long Span Bridge Model Prone to Coupled Flutter Using Targeted Energy Transfer
,”
J. Sound Vib.
,
330
(
11
), pp.
2580
2595
.
9.
Pourzeynali
,
S.
, and
Datta
,
T.
,
2002
, “
Control of Flutter of Suspension Bridge Deck Using TMD
,”
Wind Struct.
,
5
(
5
), pp.
407
422
.
10.
Den Hartog
,
J. P.
,
1934
,
Mechanical Vibrations
,
McGraw-Hill Book Company
,
New York
.
11.
Gattulli
,
V.
,
Di Fabio
,
F.
, and
Luongo
,
A.
,
2004
, “
Nonlinear Tuned Mass Damper for Self-Excited Oscillations
,”
Wind Struct.
,
7
(
4
), pp.
251
264
.
12.
Lee
,
Y. S.
,
Vakakis
,
A.
,
Bergman
,
L.
,
McFarland
,
D. M.
, and
Kerschen
,
G.
,
2007
, “
Suppressing Aeroelastic Instability Using Broadband Passive Targeted Energy Transfers, Part 1: Theory
,”
AIAA J.
,
45
(
3
), pp.
693
711
.
13.
Lee
,
Y. S.
,
Kerschen
,
G.
,
McFarland
,
D. M.
,
Hill
,
W. J.
,
Nichkawde
,
C.
,
Strganac
,
T. W.
,
Bergman
,
L. A.
, and
Vakakis
,
A. F.
,
2007
, “
Suppressing Aeroelastic Instability Using Broadband Passive Targeted Energy Transfers—Part 2: Experiments
,”
AIAA J.
,
45
(
10
), pp.
2391
2400
.
14.
Gendelman
,
O. V.
,
2001
, “
Transition of Energy to a Nonlinear Localized Mode in a Highly Asymmetric System of Two Oscillators
,”
Nonlinear Dyn.
,
25
(
1–3
), pp.
237
253
.
15.
Vakakis
,
A. F.
, and
Gendelman
,
O.
,
2001
, “
Energy Pumping in Nonlinear Mechanical Oscillators—Part II: Resonance Capture
,”
ASME J. Appl. Mech.
,
68
(
1
), pp.
42
48
.
16.
Vakakis
,
A. F.
,
Manevitch
,
L. I.
,
Gendelman
,
O.
, and
Bergman
,
L.
,
2003
, “
Dynamics of Linear Discrete Systems Connected to Local, Essentially Non-Linear Attachments
,”
J. Sound Vib.
,
264
(
3
), pp.
559
577
.
17.
Vakakis
,
A. F.
,
Gendelman
,
O. V.
,
Bergman
,
L. A.
,
McFarland
,
D. M.
,
Kerschen
,
G.
, and
Lee
,
Y. S.
,
2008
,
Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems
, Vol.
156
.
Springer
,
New York
.
18.
Gendelman
,
O. V.
,
Vakakis
,
A. F.
,
Bergman
,
L. A.
, and
McFarland
,
D. M.
,
2010
, “
Asymptotic Analysis of Passive Nonlinear Suppression of Aeroelastic Instabilities of a Rigid Wing in Subsonic Flow
,”
SIAM J. Appl. Math.
,
70
(
5
), pp.
1655
1677
.
19.
Hubbard
,
S. A.
,
Fontenot
,
R. L.
,
McFarland
,
D. M.
,
Cizmas
,
P. G.
,
Bergman
,
L. A.
,
Strganac
,
T. W.
, and
Vakakis
,
A. F.
,
2014
, “
Transonic Aeroelastic Instability Suppression for a Swept Wing by Targeted Energy Transfer
,”
J. Aircr.
,
51
(
5
), pp.
1467
1482
.
20.
Viguié
,
R.
, and
Kerschen
,
G.
,
2009
, “
Nonlinear Vibration Absorber Coupled to a Nonlinear Primary System: A Tuning Methodology
,”
J. Sound Vib.
,
326
(
3
), pp.
780
793
.
21.
Habib
,
G.
,
Detroux
,
T.
,
Viguié
,
R.
, and
Kerschen
,
G.
,
2015
, “
Nonlinear Generalization of Den Hartog's Equal-Peak Method
,”
Mech. Syst. Signal Process.
,
52–53
, pp.
17
28
.
22.
Habib
,
G.
, and
Kerschen
,
G.
,
2016
, “
A Principle of Similarity for Nonlinear Vibration Absorbers
,”
Physica D: Nonlinear Phenom.
,
332
(
1
), pp.
1
8
.
23.
Habib
,
G.
, and
Kerschen
,
G.
,
2015
, “
Suppression of Limit Cycle Oscillations Using the Nonlinear Tuned Vibration Absorber
,”
Proc. R. Soc. London
,
471
(
2176
), p.
20140976
.
24.
Grappasonni
,
C.
,
Habib
,
G.
,
Detroux
,
T.
, and
Kerschen
,
G.
,
2016
, “
Experimental Demonstration of a 3D-Printed Nonlinear Tuned Vibration Absorber
,”
Nonlinear Dynamics
(Conference Proceedings of the Society for Experimental Mechanics Series), Vol.
1
,
Springer
, Cham, Switzerland, pp.
173
183
.
25.
Benacchio
,
S.
,
Malher
,
A.
,
Boisson
,
J.
, and
Touzé
,
C.
,
2016
, “
Design of a Magnetic Vibration Absorber With Tunable Stiffnesses
,”
Nonlinear Dyn.
,
85
(
2
), pp.
893
911
.
26.
Lacarbonara
,
W.
, and
Cetraro
,
M.
,
2011
, “
Flutter Control of a Lifting Surface Via Visco-Hysteretic Vibration Absorbers
,”
Int. J. Aeronaut. Space Sci.
,
12
(
4
), pp.
331
345
.
27.
Lee
,
B. H. K.
,
Jiang
,
L.
, and
Wong
,
Y.
,
1998
, “
Flutter of an Airfoil With a Cubic Nonlinear Restoring Force
,”
AIAA
Paper No. AIAA-98-1725
28.
Pettit
,
C. L.
, and
Beran
,
P. S.
,
2003
, “
Effects of Parametric Uncertainty on Airfoil Limit Cycle Oscillation
,”
J. Aircr.
,
40
(
5
), pp.
1004
1006
.
29.
Bisplinghoff
,
R. L.
, and
Ashley
,
H.
,
1962
,
Principles of Aeroelasticity
,
Wiley
,
New York
.
30.
Fung
,
Y. C.
,
2002
,
An Introduction to the Theory of Aeroelasticity
,
Dover Publications
,
Mineola, NY
.
31.
Lee
,
Y. S.
,
Vakakis
,
A. F.
,
Bergman
,
L. A.
,
McFarland
,
D. M.
, and
Kerschen
,
G.
,
2005
, “
Triggering Mechansms of Limit Cycle Oscillations Due to Aeroelastic Instability
,”
J. Fluids Struct.
,
21
(5–7), pp.
485
529
.
32.
Amandolèse
,
X.
,
Michelin
,
S.
, and
Choquel
,
M.
,
2013
, “
Low Speed Flutter and Limit Cycle Oscillations of a Two-Degree-of-Freedom Flat Plate in a Wind Tunnel
,”
J. Fluids Struct.
,
43
, pp.
244
255
.
33.
Dimitriadis
,
G.
, and
Li
,
J.
,
2009
, “
Bifurcation Behavior of Airfoil Undergoing Stall Flutter Oscillations in Low-Speed Wind Tunnel
,”
AIAA J.
,
47
(
11
), pp.
2577
2596
.
34.
Kuznetsov
,
Y. A.
,
2013
,
Elements of Applied Bifurcation Theory
, Vol.
112
,
Springer
,
New York
.
35.
Guckenheimer
,
J.
, and
Holmes
,
P.
,
2013
,
Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields
,
Springer
,
New York
.
36.
Manneville
,
P.
,
1995
, “
Dissipative Structures and Weak Turbulence
,”
Chaos—The Interplay Between Stochastic and Deterministic Behaviour
, Springer, New York, pp.
257
272
.
37.
Iooss
,
G.
, and
Adelmeyer
,
M.
,
1998
,
Topics in Bifurcation Theory and Applications
,
World Scientific
,
Singapore
.
38.
Gai
,
G.
, and
Timme
,
S.
,
2016
, “
Nonlinear Reduced-Order Modelling for Limit-Cycle Oscillation Analysis
,”
Nonlinear Dyn.
,
84
(
2
), pp.
991
1009
.
39.
Touzé
,
C.
,
Thomas
,
O.
, and
Chaigne
,
A.
,
2004
, “
Hardening/Softening Behaviour in Non-Linear Oscillations of Structural Systems Using Non-Linear Normal Modes
,”
J. Sound Vib.
,
273
(
1
), pp.
77
101
.
40.
Doedel
,
E. J.
,
Paffenroth
,
R. C.
,
Champneys
,
A. R.
,
Fairgrieve
,
T. F.
,
Kuznetsov
,
Y. A.
,
Sandstede
,
B.
, and
Wang
,
X.
,
2002
, “
Auto 2000: Continuation and Bifurcation Software for Ordinary Differential Equations
,” Concordia University, Montreal, QC, Canada, Technical Report.
41.
Woolston
,
D. S.
,
Runyan
,
H. L.
, and
Andrews
,
R. E.
,
1957
, “
An Investigation of Effects of Certain Types of Structural Nonlinearities on Wing and Control Surface Flutter
,”
J. Aeronaut. Sci.
,
24
(
1
), pp.
57
63
.
You do not currently have access to this content.