A novel synchronization scheme called special hybrid projective synchronization (SHPS), in which different state variables can synchronize up to same positive or negative scaling factors, is proposed in this paper. For all the symmetric chaotic systems, research results demonstrate that the SHPS can be realized with a single-term linear controller. Taking unified chaotic system with unknown parameter as an example, based on Lyapunov stability theory, some sufficient conditions and a parameter update law are derived for the implementation of SPHS, which are verified by some corresponding numerical simulations.

References

References
1.
Chen
,
G. R.
, and
Yu
,
X. H.
,
2003
,
Chaos Control
,
Springer
,
Berlin
.
2.
Pecora
,
L. M.
, and
Carroll
,
T. L.
,
1990
, “
Synchronization in Chaotic Systems
,”
Phys. Rev. Lett.
,
64
(
8
), pp.
821
824
.
3.
Sun
,
H. J.
, and
Cao
,
H. J.
,
2016
, “
Synchronization of Two Identical and Non-Identical Rulkov Models
,”
Commun. Nonlinear Sci. Numer. Simul.
,
40
, pp.
15
27
.
4.
Rangaprakash
,
D.
, and
Pradhan
,
N.
,
2014
, “
Study of Phase Synchronization in Multichannel Seizure EEG Using Nonlinear Recurrence Measure
,”
Biomed. Signal Process. Control
,
11
, pp.
114
122
.
5.
,
L.
,
Li
,
C. R.
,
Chen
,
L. S.
, and
Wei
,
L. L.
,
2014
, “
Lag Projective Synchronization of a Class of Complex Network Constituted Nodes With Chaotic Behavior
,”
Commun. Nonlinear Sci. Numer. Simul.
,
19
(
8
), pp.
2843
2849
.
6.
Banerjee
,
S.
,
Theesar
,
S. J.
, and
Kurths
,
J.
,
2013
, “
Generalized Variable Projective Synchronization of Time Delayed Systems
,”
Chaos
,
23
(
1
), p.
013118
.
7.
Ghosh
,
D.
, and
Banerjee
,
S.
,
2013
, “
Projective Synchronization of Time-Varying Delayed Neural Network With Adaptive Scaling Factors
,”
Chaos, Solitons Fractals
,
53
(
53
), pp.
1
9
.
8.
Li
,
C. L.
,
Xiong
,
J. B.
, and
Li
,
W.
,
2014
, “
A New Hyperchaotic System and Its Generalized Synchronization
,”
Optik
,
125
(
1
), pp.
575
579
.
9.
Geng
,
L. L.
,
Yu
,
Y. G.
, and
Zhang
,
S.
,
2016
, “
Function Projective Synchronization Between Integer-Order and Stochastic Fractional-Order Nonlinear Systems
,”
ISA Trans.
,
64
, pp.
34
46
.
10.
Behinfaraz
,
R.
,
Badamchizadeh
,
M. A.
, and
Ghiasi
,
A. R.
,
2015
, “
An Approach to Achieve Modified Projective Synchronization Between Different Types of Fractional-Order Chaotic Systems With Time-Varying Delays
,”
Chaos, Solitons Fractals
,
78
, pp.
95
106
.
11.
Wang
,
X. Y.
, and
Song
,
J. M.
,
2009
, “
Adaptive Full State Hybrid Projective Synchronization in the Unified Chaotic System
,”
Mod. Phys. Lett. B
,
23
(
15
), pp.
1913
1921
.
12.
Ghosh
,
D.
, and
Banerjee
,
S.
,
2008
, “
Adaptive Scheme for Synchronization-Based Multiparameter Estimation From a Single Chaotic Time Series and Its Applications
,”
Phys. Rev. E
,
78
(
5
), p.
056211
.
13.
Wang
,
Z. L.
,
Wang
,
C.
,
Shi
,
X. R.
,
Ma
,
J.
,
Tang
,
K. M.
, and
Cheng
,
H. S.
,
2014
, “
Realizing Hybrid Synchronization of Time-Delay Hyperchaotic 4D Systems Via Partial Variables
,”
Appl. Math. Comput.
,
245
, pp.
427
437
.
14.
Chen
,
X. Y.
,
Qiu
,
J. L.
,
Cao
,
J. D.
, and
He
,
H. B.
,
2016
, “
Hybrid Synchronization Behavior in an Array of Coupled Chaotic Systems With Ring Connection
,”
Neurocomputing
,
173
(Pt. 3), pp.
1299
1309
.
15.
Hu
,
M. F.
,
Xu
,
Z. Y.
,
Zhang
,
R.
, and
Hu
,
A. H.
,
2007
, “
Adaptive Full State Hybrid Projective Synchronization of Chaotic Systems With the Same and Different Order
,”
Phys. Lett. A
,
365
(
4
), pp.
315
327
.
16.
Wang
,
S.
,
Yu
,
Y. G.
, and
Wen
,
G. G.
,
2014
, “
Hybrid Projective Synchronization of Time-Delayed Fractional Order Chaotic Systems
,”
Nonlinear Anal. Hybrid Syst.
,
11
, pp.
129
138
.
17.
Yu
,
Y. G.
, and
Li
,
H. X.
,
2011
, “
Adaptive Hybrid Projective Synchronization of Uncertain Chaotic Systems Based on Backstepping Design
,”
Nonlinear Anal. Real World Appl.
,
12
(
1
), pp.
388
393
.
18.
,
J. H.
,
Chen
,
G. R.
,
Cheng
,
D. Z.
, and
Celikovsky
,
S.
,
2002
, “
Bridge the Gap Between the Lorenz System and the Chen System
,”
Int. J. Bifurcation Chaos
,
12
(
12
), pp.
2917
2926
.
19.
Qi
,
G. Y.
,
Du
,
S. Z.
,
Chen
,
G. R.
,
Chen
,
Z. Q.
, and
Yuan
,
Z. Z.
,
2005
, “
On a Four Dimensional Chaotic System
,”
Chaos, Solitons Fractals
,
23
(
5
), pp.
1671
1682
.
You do not currently have access to this content.